资源预览内容
第1页 / 共47页
第2页 / 共47页
第3页 / 共47页
第4页 / 共47页
第5页 / 共47页
第6页 / 共47页
第7页 / 共47页
第8页 / 共47页
第9页 / 共47页
第10页 / 共47页
亲,该文档总共47页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
DEA模型 1987年年查查恩恩斯斯,库库伯伯,魏魏权权龄龄和和黄黄志志明明又又得得到到了了称称为为锥锥比比率率的的数数据据包包络络模模型型C2WH模模型型。这这一一模模型型可可用用来来处处理理具具有有过过多多的的输输入入及及输输出出的的情情况况,而而且且锥锥的的选选取取可可以以体体现现决决策策者者的的“偏偏好好”.灵灵活活地地应应用用这这一一模模型型,可可以以将将C2R模模型型中中确定出的确定出的DEA有效决策单元进行分类或排队有效决策单元进行分类或排队. 数数据据包包络络分分析析是是运运筹筹学学的的一一个个新新的的研研究究领领域域.查查恩恩斯斯和和库库伯伯等等人人的的第第一一个个应应用用DEA的的十十分分成成功功的的案案例例,就就是是评评价价为为弱弱智智儿儿童童开开设设公公立立学学校校项项目目的的效效果果.在在评评估估中中,输输出出包包括括“自自尊尊”等等无无形形的的指指标标;输输入入包包括括父父母母的的照照料料和和父父母母的的文文化化程程度度等等,无无论论哪哪种种指指标标都都有有无无法法与与市市场场价价格格相相比比较较,也也难难以以轻轻易定出适当的权重易定出适当的权重(权系数权系数),这也是这也是DEA的优点之一的优点之一. DEA的的优优点点吸吸引引众众多多的的应应用用者者,应应用用范范围围已已扩扩展展到到美美国国军军用用飞飞机机的的飞飞行行,基基地地维维修修与与保保养养,以以及及陆陆军军征征兵兵,城城市市,银银行行 2我们限定所有的我们限定所有的hj值不超过值不超过1,即,即 ,这意味着,这意味着,若第若第k个企业个企业hk=1,则该企业相对于其他企业来说生产率最则该企业相对于其他企业来说生产率最高,或者说这一生产系统是相对有效的,若高,或者说这一生产系统是相对有效的,若hk1,那么该那么该企业相对于其他企业来说,生产效率还有待于提高,或者企业相对于其他企业来说,生产效率还有待于提高,或者说这一生产系统还不是有效的。说这一生产系统还不是有效的。即即因此,建立第一个企业的生产效率最高的优化模型如下:因此,建立第一个企业的生产效率最高的优化模型如下:这是一个分式规划,需要这是一个分式规划,需要将它化为线性规划才能求将它化为线性规划才能求解。解。max6设设则此分式规划可化为如下的则此分式规划可化为如下的线性规划线性规划其对偶其对偶问题为问题为max7 设vi为第i个指标xi的权重,ur为第r个产出yr指标的权重,则第j个企业投入的综合值为 ,产出的综合值为 其生产效率定义为: 于是问题实际上是确定一组最佳的权变量v1,v2,v3和u1,u2,使第j个企业的效率值hj最大。这个最大的效率评价值是该企业相对于其他企业来说不可能更高的相对效率评价值。 我们限定所有的hj值(j=1,2,3)不超过1,即maxhj1。这意味着,若第k个企业hk=1,则该企业相对于其他企业来说生产率最高,或者说这一系统是相对而言有效的;若hk1,那么该企业相对于其他企业来说,生产率还有待于提高,或者说这一生产系统还不是有效的。 8 根据上述分析,可以建立确定任何一个企业(如第3 个企业即丙企业)的相对生产率最优化模型如下: 1、评价决策单元技术和规模综合效率的、评价决策单元技术和规模综合效率的C2R模型模型 设有n个同类型的企业(也称决策单元),对于每个企业都有m种类型的“输入”(表示该单元对“资源”的消耗)以及p种类型的“输出”(表示该单元在消耗了“资源”之后的产出)。 这n个企业及其输入-输出关系如下: 9:y1ny2n:ypny1jy2j:ypj:y12y22:yp2y11y21:yp1u1u2:up12:p输出x1nx2n:xmnx1jx2j:xmj:x12x22:xm2x11x21:xm1v1v2:vm12:m输入nj21 部门指标 权数每个决策单元的效率评价指数定义为: j=1,2,n10而第j0个决策单元的相对效率优化评价模型为: 上述模型中xij,yrj为已知数(可由历史资料或预测数据得到),vi,ur为变量。模型的含义是以权系数vi,ur为变量,以所有决策单元的效率指标hj为约束,以第j0个决策单元的效率指数为目标。即评价第j0个决策单元的生产效率是否有效,是相对于其他所有决策单元而言的。 s.t. vi,ur0, i=1,2,m; r=1,2,p (1)11 这是一个分式规划模型,我们必须将它化为线性规划模型才能求解。为此,令 则模型(1)转化为:(2)12(2)写成向量形式有:13其对偶问题为:(3)写成向量形式有:s.t.无约束(4) min14设问题(4)的最优解为*,s*-,s*+,*,则有如下结论: (1)若*=1,则DMUj0为弱DEA有效(总体)。(2)若*=1,且s*-=0,s*+=0,则DMUj0为DEA有效(总体)(3)令 0=*x0- s*-, 0=y0+ s*+,则为在有效前沿面上的投影,相对于原来的n个DMU是有效(总体)的。 (4)若存在j*(j=1,2,m),使 =1成立,则DMUj0为规模效益不变;若不存在j*(j=1,2,m),使 =1成立,则 1 DMUj0为规模效益递减。 15有效解的解释:有效解的解释:F(X)=f1(X),f2(X),fn(X)如对于求极大(max)型,其各种解定义如下:绝对最优解:若对于任意的X,都有F(X*)F(X)有效解:若不存在X,使得F(X*) F(X)弱有效解:若不存在X,使得F(X*)F(X)1617P63例例28 以以1997年全部独立核算企业为对象年全部独立核算企业为对象,对安徽、江西、对安徽、江西、湖南和湖北四省进行生产水平的比较。投入要素取固定资湖南和湖北四省进行生产水平的比较。投入要素取固定资产净值年平均余额产净值年平均余额(亿元亿元),流动资金年平均余额及从业人员流动资金年平均余额及从业人员(万人万人),产出要素取总产值产出要素取总产值(亿元亿元)和利税总额和利税总额(亿元亿元).安徽安徽江西江西湖南湖南湖北湖北固定资产固定资产932.66583.08936.841306.56流动资金流动资金980.45581.64849.311444.30从业人员从业人员401.8294.2443.20461.00利税总额利税总额179.2949.76144.20181.41总产值总产值2196.09930.221659.042662.21全要素相对生产率全要素相对生产率(即即DEA评价值评价值)1.0000.71400.92851.000排序排序1321181. 建立评价湖南省的建立评价湖南省的DEA模型如下模型如下求解结果为求解结果为:调整方案为调整方案为:输入调整前输入调整前输入调整后输入调整后输出调整前输出调整前输出调整后输出调整后936.84936.84*0.9285-119.71=750.15144.20144.20849.31849.31*0.9285=788.581659.041659.04+107.24=1766.28443.20443.2*0.9285-88.17=323.34192、具有非阿基米德无穷小的C2R模型在评价决策单元是否为DEA有效时,如果利用原线性规划问题需要判断是否存在最优解 ,满足如果利用对偶线性规划需要判断它的所有最优解都满足 无论是对于线性规划还是对于对偶规划,这都是不容易做到的。因此Charnes 和Cooper引入了非阿基米德无穷小的概念,利用线性规划方法求解。去判断决策单元的DEA有效性。20令是非阿基米德无穷小量,它是一个小于任何正数、且大于零的数。考虑带有非阿基米德无穷小的C2R模型:对偶问题为:其中215、DEA有效性的经济含义有效性的经济含义考虑投入量为 ,产出量为 的某种生产活动。我们的目的是根据所观察到的生产活动(xj,yj),j=1,2,n,去描述生产可能集,特别是根据这些观察数据去确定哪些生产活动是相对有效的。生产可能集生产可能集定义为:T=(X,Y)|产出向量Y可以由投入向量X生产出来因此,生产可能集可确定为:22有效性定义:有效性定义:对任何一个决策单元,它达到对任何一个决策单元,它达到100%的效率是的效率是指:指:在现有的输入条件下,任何一种输出都无法增加,在现有的输入条件下,任何一种输出都无法增加,除非同时降低其他种类的输出;除非同时降低其他种类的输出;要达到现有的输出,任要达到现有的输出,任何一种输入都无法降低,除非同时增加其他种类的输入。何一种输入都无法降低,除非同时增加其他种类的输入。一个决策单元达到了一个决策单元达到了100%的效率,该决策单元就是有效的,的效率,该决策单元就是有效的,也就是有效的决策单元。也就是有效的决策单元。无效性定义无效性定义:(1)对任意(X,Y)T,并且 ,均有(2)对任意( X,Y)T,并且 ,均有这就是说,以较多的输入或较少的输出进行生产总是可能的。23既是技术有效,也是规模有效 下面我们以单输入单输出的情况来说明下面我们以单输入单输出的情况来说明DEA有效性的经有效性的经济含义。首先叙述生产函数的概念。生产函数济含义。首先叙述生产函数的概念。生产函数Y=f(X)表表示在生产处于最好的理想状态时,当投入量为示在生产处于最好的理想状态时,当投入量为X,所能获得所能获得的最大输出的最大输出.因此因此,生产函数图象上的点生产函数图象上的点(X表示输入表示输入,Y表示表示输出输出)所对应的决策单元所对应的决策单元,从生产函数的角度看从生产函数的角度看,是处于是处于“技技术有效术有效”的状态的状态.一般来说生产函数的图象如下一般来说生产函数的图象如下:ABC既不是技术有效,也不是规模有效技术有效,但不是规模有效24我们现在来研究在模型我们现在来研究在模型C2R之下的之下的DEA有效性的经济含义有效性的经济含义.检验决策单元检验决策单元j0的的DEA有效性有效性,即考虑线性规划问题即考虑线性规划问题:由于 ,即 满足 可以看出可以看出,线性规划是表示在生产可能集线性规划是表示在生产可能集T内内,当产出当产出Y0保持不变的情况下保持不变的情况下,尽量将投入量尽量将投入量X0按同一比例按同一比例减少减少.如如果投入量果投入量X0不能按同一比例不能按同一比例减少减少,即线性规划的最优值即线性规划的最优值=1,在单输入与单输出的情况下在单输入与单输出的情况下,决策单元决策单元j0既为技术有效既为技术有效,也为规模有效也为规模有效.反之反之,如果投入量如果投入量X0能按同一比例能按同一比例减少减少,即线性规划的最优值即线性规划的最优值1,在单输入与单输出的情况下在单输入与单输出的情况下,决决策单元策单元j0不为技术有效不为技术有效,或不为规模有效或不为规模有效.25例题例题: 下面是具有下面是具有3个决策单元的单输入数据和单输出数据个决策单元的单输入数据和单输出数据.相应决策单元所对应的点以相应决策单元所对应的点以A,B,C表示表示,其中点其中点A、C在生在生产曲线上产曲线上,点点B在生产曲线下方。由在生产曲线下方。由3个决策单元所确定的个决策单元所确定的生产可能集生产可能集T也在图中标出来。也在图中标出来。2 4 52 1 3.5输入输出A(2,2)B(4,1)C(3,5)Y=Y(X)对于决策点A,它是“技术有效”和“规模有效”,它所对应的C2R模型为其最优解为:262 4 52 1 3.5输入输出A(2,2)B(4,1)C(3,5)Y=Y(X)对于决策点B,它不是“技术有效”,因为点B不在生产函数曲线上,也不是“规模有效”,这是因为它的投资规模太大.其最优解为:其对应的C2R模型如下:由于1,故B点不是DEA有效,由 ,知该部门的规模收益是递减的.272 4 52 1 3.5输入输出A(2,2)B(4,1)C(3,5)Y=Y(X)其最优解为:对于决策点C,因为点C是在生产函数曲线上,它是“技术有效”,但由于它的投资规模太大,所以不是“规模有效”.其对应的C2R模型如下:由于1,故C点不是DEA有效,由 ,知该部门的规模收益是递减的.28二、评价技术有效性的二、评价技术有效性的C2GS2模型模型考虑一对线性规划对偶问题:考虑一对线性规划对偶问题:(P)(D) 该模型计算出的DMU效率是纯技术效率,反映DMU的纯技术效率状况,称为纯技术效率。设问题的最优解为*,s*-,s*+,*,则有如下结论: (1)若*=1,则DMUj0为弱DEA有效( C2GS2纯技术)。(2)若*=1,且s*-=0,s*+=0,则DMUj0为DEA有效(C2GS2纯技术)。29线性规划线性规划(D)的经济解释是的经济解释是:在生产可能在生产可能集集T内内,当产出当产出Y0保持不变的情况下保持不变的情况下,尽量尽量将投入量将投入量X0按同一比例按同一比例减少减少.如果投入如果投入量量X0不能按同一比例不能按同一比例减少减少,即线性规划即线性规划的最优值的最优值=1,在单输入与单输出的情况下在单输入与单输出的情况下,决策单元决策单元j0既为技术有效既为技术有效.反之反之,如果投如果投入量入量X0能按同一比例能按同一比例减少减少,即线性规划即线性规划的最优值的最优值1,在单输入与单输出的情况下在单输入与单输出的情况下,决策单元决策单元j0不为技术有效不为技术有效.C2GS2模型的经济解释模型的经济解释:(D)在这里之所以与在这里之所以与C2R模型的情况不同模型的情况不同,是因为生产可能集是因为生产可能集T的构成不满足的构成不满足“锥性锥性”的公理假设的公理假设.“锥性锥性”的公理假设的公理假设:对任意对任意(X,Y)T,及数及数k0,均有均有这就是说这就是说,若以投入量若以投入量X的的k倍进行输入倍进行输入,那么产出量也以原那么产出量也以原来产出来产出Y的的k倍产出是可能的倍产出是可能的.30具有非阿基米德无穷小的模型为具有非阿基米德无穷小的模型为:(P)(D)31例题例题:考虑具有一个输入和一个输出的问题考虑具有一个输入和一个输出的问题,它们由下表给它们由下表给出出:1 3 42 3 1输入输出考察决策单元考察决策单元1,相应的线性规划模型为相应的线性规划模型为:其最优解为:知决策单元1为DEA有效(C2GS2)321 3 42 3 1输入输出考察决策单元考察决策单元2,相应的线性规划模型为相应的线性规划模型为:其最优解为:知决策单元2为DEA有效(C2GS2)331 3 42 3 1输入输出考察决策单元考察决策单元3,相应的线性规划模型为相应的线性规划模型为:其最优解为:知决策单元3不为DEA有效(C2GS2)T(1,2)(3,3)(4,1)341 3 42 3 1输入输出对于决策单元对于决策单元2,为为DEA有效有效(C2GS2),但却不是但却不是DEA(C2R)有有效效.其最优解为:知决策单元2不为DEA有效(C2R)T(1,2)(3,3)(4,1)T(1,2)(3,3)(4,1)其其C2R模型为模型为:35三、评价第三、评价第j0决策单元决策单元DMU纯规模效率模型为:纯规模效率模型为: (6) 根据DEA的理论,总体效率*、纯技术效率*、纯规模效率s*三个参数之间存在(6)式所述的关系,由(6)可直接计算DMU的纯规模效率。 36四、具有锥比率的四、具有锥比率的C2WH模型模型假设有假设有n个决策单元对应的输入数据和输出数据如下个决策单元对应的输入数据和输出数据如下XY1 2 n则则C2WH模型如下:模型如下:37则则C2WH模型如下:模型如下:(P)结论结论:(1)若规划若规划P存在最优解存在最优解 ,满足满足(D)则称决策单元则称决策单元j0为弱为弱DEA有效有效(C2WH) (2)若规划若规划P存在最优解存在最优解 ,满足满足则称决策单元则称决策单元j0为为DEA有效有效(C2WH)38使用凸锥去度量决策单元的使用凸锥去度量决策单元的DEA有效性时有效性时,相应的生产可能相应的生产可能集为集为:其中其中若令若令则锥比率模型则锥比率模型(P)和和(D)化化为为C2R模型模型(P)(D)可见可见C2WH模型是模型是C2R模型的推广模型的推广.39例题例题:考虑具有二个输入和一个输出的问题考虑具有二个输入和一个输出的问题,它们由下表给它们由下表给出出:13 3 4210 1 3 21 1 2 1输入输出在使用在使用C2R模型评价时模型评价时,决策单元决策单元1,2,3均为均为DEA有效有效(C2R).以决策单元以决策单元2为例为例.其其C2R模型为模型为:其最优解为其最优解为故为故为DEA有效有效(C2R)40 我们知道我们知道,在使用在使用DEA方法评价部门间的相对有效性时方法评价部门间的相对有效性时,变量变量v表示对输入的权系数表示对输入的权系数,它表示各种不同输入之间的相它表示各种不同输入之间的相对重要对重要;变量变量u表示对输出的权系数表示对输出的权系数,表示各种不同输出之间表示各种不同输出之间的相对重要性的相对重要性.于是于是,在在C2R模型中的线性规划模型中的线性规划(P)中的中的和和也具有同样的意义也具有同样的意义.在求线性规划问题在求线性规划问题(P)的最优解时的最优解时,实际实际上是选取对决策单元上是选取对决策单元j0最为有利的权系数最为有利的权系数.在很多实际问题在很多实际问题中中,每项输入每项输入(或输出或输出)的重要性是不尽相同的的重要性是不尽相同的(例如某项生例如某项生产活动中输入可以是黄金和煤炭的情况产活动中输入可以是黄金和煤炭的情况).因此因此,权系数的选权系数的选取应该满足一定的限制取应该满足一定的限制.在上述例子中在上述例子中,决策单元决策单元2是是DEA有有效效(C2R)时时,表示输入项目表示输入项目1和输入项目和输入项目2的重要性之比是的重要性之比是如果事先认为第一项输入与第二项输入的重要性之比为如果事先认为第一项输入与第二项输入的重要性之比为则必须使用则必须使用C2WH模型模型,此时此时,对决策单元对决策单元2,有有:41其中求解结果为求解结果为不为不为DEA有效有效(C2WH)下面讨论当下面讨论当V,U,K为多面凸锥时的为多面凸锥时的C2WH模型模型.令令则有则有42AX1 AX2 AXn By1 By2 BYn1 2 n因此因此,将将DEA模型转化为具模型转化为具有有 个输入和具有个输入和具有 个输出个输出的的DEA问题问题.而原始的模型转化为而原始的模型转化为:(P)(D)因此因此,适当地选取多面凸锥适当地选取多面凸锥V和和U,以及以及K=En+,锥比率的模型锥比率的模型C2WH相当于将原来的输入相当于将原来的输入-输出数据左乘矩阵输出数据左乘矩阵A和和B之后之后,新的新的“输入输入-输出数据输出数据”AX和和BY的的C2R模型模型.这种模型对于这种模型对于输入项目或输出项目过多的情况是特别有效的输入项目或输出项目过多的情况是特别有效的.43因为我们可以取因为我们可以取A的行数的行数 小于它的列数小于它的列数m,相应的取相应的取B的的行数行数 小于它的列数小于它的列数s ,即取即取此时的输入数目缩小为此时的输入数目缩小为 个个,输出数目缩小为输出数目缩小为 个个.DEA有效等价于一个具有输入数与输出数之和有效等价于一个具有输入数与输出数之和(m+s)个目标的多个目标的多目标规划问题的目标规划问题的pareto有效解有效解.一般来说一般来说,目标函数的个数目标函数的个数增多增多, pareto有效解集合要扩大有效解集合要扩大.因此因此,过多的输入和输出数过多的输入和输出数目目,用用C2R模型进行效率评价时模型进行效率评价时,往往会出现绝大多数的决往往会出现绝大多数的决策单元都有是策单元都有是DEA有效有效.44例题例题:考虑具有二个输入和一个输出的问题考虑具有二个输入和一个输出的问题,它们由下表给它们由下表给出出:13 3 4210 1 3 21 1 2 1输入输出在使用在使用C2R模型评价时模型评价时,决策单元决策单元1,2,3均为均为DEA有效有效(C2R).假如对两种不同类型的输入假如对两种不同类型的输入,它们它们 重要性不同重要性不同,可以认为重可以认为重要性之比为要性之比为:则取则取45因此因此,C2R模型的新的输入模型的新的输入-输出数据为输出数据为:1 1 2 1输入输出例如例如,当当k2=1时时,结果分类如下结果分类如下:(1)当当 时时,决策单元决策单元1、2、3为为DEA有效;有效;(2)当当 时时,决策单元决策单元1、3为为DEA有效;有效;(3)当当 时时,决策单元决策单元1为为DEA有效;有效;也就是说随着也就是说随着k1的增大的增大,第一种输入比第二种输入越来越重要第一种输入比第二种输入越来越重要.因此因此,如如果不断地加强偏好信息果不断地加强偏好信息,可以将可以将C2R模型中的模型中的DEA有效决策单元进行分有效决策单元进行分类或排队类或排队.46结束语结束语谢谢大家聆听!谢谢大家聆听!47
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号