资源预览内容
第1页 / 共27页
第2页 / 共27页
第3页 / 共27页
第4页 / 共27页
第5页 / 共27页
第6页 / 共27页
第7页 / 共27页
第8页 / 共27页
第9页 / 共27页
第10页 / 共27页
亲,该文档总共27页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
2.3.2平面向量的坐标运算(一)第2章2.3向量的坐标表示1.了解平面向量的正交分解,掌握向量的坐标表示.2.掌握两个向量和、差及数乘向量的坐标运算法则.3.正确理解向量坐标的概念,要把点的坐标与向量的坐标区分开来.问题导学题型探究达标检测学习目标知识点一平面向量的正交分解答案问题导学 新知探究 点点落实思考如果向量a与b的夹角是90,则称向量a与b垂直,记作ab.互相垂直的两个向量能否作为平面内所有向量的一组基底?答互相垂直的两个向量能作为平面内所有向量的一组基底.把一个向量分解成 向量,叫做把向量正交分解.两个互相垂直的知识点二平面向量的坐标表示答案思考如图,向量i,j是两个互相垂直的单位向量,向量a与i的夹角是30,且|a|4,以向量i,j为基底,向量a如何表示?1.在平面直角坐标系中,分别取与x轴、y轴方向相同的两个 i、j作为基底.对于平面内的任一向量a,由平面向量基本定理可知,有且只有一对实数x,y,使得axiyj.平面内的任一向量a都可由x、y唯一确定,我们把有序数对(x,y)叫做向量a的坐标,记作a(x,y).2.在平面直角坐标平面中,i(1,0),j(0,1),0(0,0).单位向量知识点三平面向量的坐标运算答案思考1设i、j是与x轴、y轴同向的两个单位向量,若设a(x1,y1),b(x2,y2),则ax1iy1j,bx2iy2j,根据向量的线性运算性质,向量ab,ab,a(R)如何分别用基底i、j表示?答ab(x1x2)i(y1y2)j,ab(x1x2)i(y1y2)j,ax1iy1j.思考2根据向量的坐标表示,向量ab,ab,a的坐标又如何表示?答案设a(x1,y1),b(x2,y2),数学公式文字语言表述向量加法ab(x1x2,y1y2)两个向量和的坐标分别等于这两个向量相应坐标的和向量减法ab(x1x2,y1y2)两个向量差的坐标分别等于这两个向量相应坐标的差向量数乘a(x1,x2)实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标返回类型一求向量的坐标题型探究 重点难点 个个击破例1如图,在直角坐标系xOy中,OA4,AB3,AOx45,OAB105, a, b.四边形OABC为平行四边形.(1)求向量a,b的坐标;解析答案反思与感悟解析答案(3)求点B的坐标.解析答案解如图所示,利用三角函数的定义,可得:类型二平面向量的坐标运算反思与感悟解析答案跟踪训练2已知a(2,3),b(3,1),c(10,4),试用a,b表示c.解设cxayb,则(10,4)x(2,3)y(3,1)(2x3y,3xy),解析答案解得x2,y2,c2a2b.类型三平面向量坐标运算的应用反思与感悟例3已知平面上三点的坐标分别为A(2,1),B(1,3),C(3,4),求点D的坐标,使这四点构成平行四边形的四个顶点.解析答案跟踪训练3已知M(2,1),N(0,5),且点P在MN的延长线上,|MP|2|PN|,则P点坐标为_.返回(2,11)解析答案故点P的坐标为(2,11).1231.若i,j为正交基底,设a(x2x1)i(x2x1)j(其中xR),则向量a对应的坐标位于第_象限四达标检测 4解析答案5解析a对应的坐标为(x2x1,x2x1).a对应的坐标位于第四象限.1234解析答案5解析答案3.已知e1(1,2),e2(2,3),a(1,2),则以e1,e2为基底,将a分解成1e12e2(1,2R)的形式为_.12345解析设a1e12e2(1,2R),则(1,2)1(1,2)2(2,3)(122,2132),解析答案12345(3,5)解析答案123451.在平面直角坐标系中,平面内的点、以原点为起点的向量、有序实数对三者之间建立一一对应关系.关系图如图所示.返回规律与方法2.向量的坐标和这个向量的终点的坐标不一定相同.当且仅当向量的起点在原点时,向量的坐标才和这个终点的坐标相同.3.向量坐标形式的计算,要牢记公式,细心计算,防止符号错误.本课结束
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号