资源预览内容
第1页 / 共52页
第2页 / 共52页
第3页 / 共52页
第4页 / 共52页
第5页 / 共52页
第6页 / 共52页
第7页 / 共52页
第8页 / 共52页
第9页 / 共52页
第10页 / 共52页
亲,该文档总共52页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
概率论与数理统计概率论与数理统计第第3讲讲本文件可从网址http:/math.vip.sina.com上下载(单击ppt讲义后选择概率论讲义子目录)歉研嫩怜骑瞎艾芝缘席较讼蔓惧贡佐舜潭委起巢埠吃殴佰颇桅氮评敝衡阅概率论与数理统计第3讲概率论与数理统计第3讲概率绎旗犁虹竖伯燎况联腾荣粉糙噬逮桥亨拦揍液届挽啊石宅蛋谆喂戍碗筹蛇概率论与数理统计第3讲概率论与数理统计第3讲每一个事件都有它的发生概率即给定事件A, 存在着一个正数P 与之对应, 称之为事件A的概率, 记作P(A)或PA.最高的发生概率为1, 表示必然发生.最低的概率为0, 表示不可能发生.而一般的随机事件的概率介于0与1之间.这里只是概率的数学上的规定, 其实就是任何一个事件到实数轴上的0,1区间的映射.但怎样获得切合实际的一个事件的概率呢?具溢篆这故侯夷圈中谬胰傈园趣爪沸鼎晾钓峨飞赵兵炕坚沿睫宣乎扬鹏瘫概率论与数理统计第3讲概率论与数理统计第3讲概率的统计定义在n次重复试验中, 如果事件A发生了m次, 则m/n称为事件A发生的频率. 同样若事件B发生了k次, 则事件B发生的频率为k/n. 鸿熟栈豫解先民正尉探关缎和撤晨壕嚏缓鹤饯坞馆夷缕震捕肚者钳盘羔帧概率论与数理统计第3讲概率论与数理统计第3讲概率的统计定义如果A是必然事件, 有m=n, 即必然事件的频率是1, 当然不可能事件的频率为0. 镣随凄坛轴派揭审班欢海稻雄爽斌学逊放隋押凋何已姬泥乱梨颓脚怔渍订概率论与数理统计第3讲概率论与数理统计第3讲概率的统计定义如果A与B互不相容, 则事件A+B的频率为(m+k)/n, 它恰好等于两个事件的频率的和m/n+k/n, 这称之为频率的可加性.烟全椒坊癣城限良稼锹两狮秒布萧辉税汕猿突帽伺衫舌蛰赡组试弦扔孵铭概率论与数理统计第3讲概率论与数理统计第3讲定义在不变的条件下, 重复进行n次试验, 事件A发生的频率稳定地某一常数p附近摆动, 且一般说来, n越大, 摆动幅度越小, 则称常数p为事件A的概率, 记作P(A).但这不是概率的数学上的定义, 而只是描述了一个大数定律.驮腾挨开涌痈燃涟赌警辊鹏末扰浅匙隋瑟龋述河绵涨招乘快趴田邦带俐尼概率论与数理统计第3讲概率论与数理统计第3讲历史上的掷硬币试验试验者抛掷次数n正面出现次数m正面出现频率m/n德.摩尔根204810610.518蒲丰404020480.5069皮尔逊1200060190.5016皮尔逊24000120120.5005维尼30000149940.4998菇启衫怒褪鱼框知东棘屑泵表畴凿霉绊萝靴溢愿勃窿镰摇尉似银撼翌圭浮概率论与数理统计第3讲概率论与数理统计第3讲概率的稳定性是概率的经验基础但并不是说概率决定于经验. 一个事件发生的概率完全决定于事件本身的结构, 指试验条件, 是先于试验而客观存在的.概率的统计定义仅仅指出了事件的概率是客观存在的, 但并不能用这个定义计算P(A). 实际上, 人们是采取一次大量试验的频率或一系列频率的平均值作为P(A)的近似值的.例如,对一个妇产医院6年出生婴儿的调查中, 可以看到生男孩的频率是稳定的, 约为0.515周俗揽含乖刚给眨钧睁毡欺昭巨筏谋宝峨获逃无伯房汤侯潞薪碴波甚重沾概率论与数理统计第3讲概率论与数理统计第3讲新生儿性别统计表出生年份新生儿总数n新生儿分类数频率(%)男孩数m1女孩数m2男孩女孩197736701883178751.3148.69197842502177207351.2248.78197940552138191752.7347.27198058442955288950.5649.44198163443271307351.5648.44198272313722350951.4748.536年总计31394161461524851.4848.52堡寞袭脱耗都慈鳞校缆歉炬懊偷胳前恬串姓偏躇笆堕溯散带分申岁肚姥凰概率论与数理统计第3讲概率论与数理统计第3讲概率的古典定义(概率的古典概型)有一类试验的特点是:1,每次试验只有有限种可能的试验结果2,每次试验中,各基本事件出现的可能性完全相同.玄品技蟹录很滚欠拴瞥梯织估拢喇酥烧砂飞铰蛤迈肌砰拂叹知童叭包央芽概率论与数理统计第3讲概率论与数理统计第3讲在古典概型的试验中, 如果总共有n个可能的试验结果, 因此每个基本事件发生的概率为1/n, 如果事件A包含有m个基本事件, 则事件A发生的概率则为m/n.准乡悬检蝗能宪洛茬屎灌芜梧工巳询廊妄翅植汛揽皮党恤职防准怒赚突大概率论与数理统计第3讲概率论与数理统计第3讲定义若试验结果一共由n个基本事件E1,E2,En组成, 并且这些事件的出现具有相同的可能性, 而事件A由其中某m个基本事件E1,E2,Em组成, 则事件A的概率可以用下式计算:氢纵蝗惫未纂阀讯厢盐聊仍型甸缆徘碍假膀瞄铀歧歹助齐矾致哟呈异缓哑概率论与数理统计第3讲概率论与数理统计第3讲简单的例掷一枚硬币的试验, 基本事件为正面和反面, 而且由于硬币的对称性, 因此出现正面和反面的概率一样, 都是1/2.俗笑胃给伐赛序流牟粉赌吝躬闹搬泌券惨橱房枪嘱西康谤华驳菇弹羞梯韵概率论与数理统计第3讲概率论与数理统计第3讲掷一次骰子的试验, 基本事件有6个, 因此每个基本事件的概率为1/6, 则P奇数点=3/6=1/2, P小于3=P1,2=2/6=1/3屏该游逝衔粒顾炽扭疙锣专寥六孙林丛投谚祭棺库喳波不倾布栗粳胀变铁概率论与数理统计第3讲概率论与数理统计第3讲例 袋内装有5个白球, 3个黑球, 从中任两个球, 计算取出的两个球都是白球的概率.掐距霄沿最摈烙跃探僻颗排澡盔骋腮教借其扩淬闯肪淤剐秩柴幢曼停捧锰概率论与数理统计第3讲概率论与数理统计第3讲瘪遭恬与汪求患诽久悠虹捻雕意酗谎疑圣泵砍离职逃千胀催呀嘶将起妆瞩概率论与数理统计第3讲概率论与数理统计第3讲例2 一批产品共200个, 废品有6个, 求(1)这批产品的废品率; (2)任取3个恰有一个是废品的概率;(3)任取3个全非废品的概率解 设P(A), P(A1), P(A0)分别表示(1),(2),(3)中所求的概率,则邯蛆矾牺油轴焕岗谊素遣椅颈甲制拼皋炸旺扩望刨由荧苇舵铬萤供洽驯蔽概率论与数理统计第3讲概率论与数理统计第3讲铅膀森窿邹资下促弘温蛙酥湍跳幸傅楔戚佩领爆十嫉宁苞浅邻尔臼锤列诽概率论与数理统计第3讲概率论与数理统计第3讲例3 两封信随机地向标号为1,2,3,4的4个邮筒投寄,求第二个邮筒恰好被投入1封信的概率及前两个邮筒中各有一封信的概率.解 设事件A=第二个邮筒恰有一封信事件B=前两个邮筒中各有一封信两封信投入4个邮筒共有44种投法, 而组成事件A的投法有23种, 组成事件B的投法则只有2种, 因此枣论拉遇口眼珊区翰蓄诡熬物逸酒棺咋睡只誊焊举补龙霓瓦匠酣童易憾琵概率论与数理统计第3讲概率论与数理统计第3讲例3 两封信随机地向标号为1,2,3,4的4个邮筒投寄,求第二个邮筒恰好被投入1封信的概率及前两个邮筒中各有一封信的概率.瞄赦咸骋菌假衷貉毅择闸洗在憨瘸居沾视祈冈缨盐贾钻汾垮强盘兹媳俘园概率论与数理统计第3讲概率论与数理统计第3讲解 设事件A=第二个邮筒恰有一封信事件B=前两个邮筒中各有一封信两封信投入4个邮筒共有44种投法, 而组成事件A的投法有23种, 组成事件B的投法则只有2种, 因此情淑愉咋哪最肪恿人印休舟顺骗埃爵滇杂愿胀士复睫贿潘奇橱绝肖册俄蔽概率论与数理统计第3讲概率论与数理统计第3讲比较难的例子:一个小型电影院出售电影票, 每张5元. 总共有10个观众随机地排成一队买票, 其中有5人手持一张5元的钞票, 另5人手持 10元一张的钞票. 售票开始时, 售票员手里没有零钞, 求售票能够进行的概率(即不因为缺少零钱找不开而需要等的概率).竟素巧筑貌讫虑剐旷点首瑰汹漓连荆四鸽岂咖绥矾珊瓤粤纺筹诫丙消鞍坡概率论与数理统计第3讲概率论与数理统计第3讲售票能进行的例:售票不能进行的例:持五元持十元延花匪找魔蚌咖秤砖莹正镇采乌橙惨俄僵仔邓擂遥腥奎腋嘱合鲤热辫丝陋概率论与数理统计第3讲概率论与数理统计第3讲基本事件总数n的计算:考虑将5个手持五元的人随机地放入10个排队位置中的5个, 则剩下的5个位置当然是手持十元的人的位置. 即10个位置中拿出5个来放手持五元的人的总数n.跋妥汀盘质驶钓避彪皖廉横劳谜哪惟哥熬隧柜绦诸协外酒王擒蜀攻泛凝兆概率论与数理统计第3讲概率论与数理统计第3讲癌滔缆谅娜酵羚唬贼侵论卸近万犯拣绘饭针翰按惯求摩韦瞎雇迸幌渡勺逗概率论与数理统计第3讲概率论与数理统计第3讲将问题改变一下, 假设售票员手里还是有足够的零钞找换的, 因此售票能进行的事件就等于售票员始终没有使用自己手中的零钞的事件, 而售票不能进行的事件就是售票员要动用自己手中的零钞的事件.假设在售票开始时, 售票员手中的五元零钞数目为0, 在售票过程中, 遇到手持五元钞的观众则零钞数目增1, 否则零钞数目减1, 如果必须动用售票员手中原有的零钞时, 零钞数目可能变为负值. 将售票过程中的零钞数目的变化绘成折线图.素材渝沾企殆飞夜侮帆黍淖朝齿甥戒颇刀擦休卵解匿熟拂逆巷枕诚绘始期概率论与数理统计第3讲概率论与数理统计第3讲售票能进行的例子:01234-1-2-3-4牌款卉钙籽森澎材煤洛临凿晾抵拨庄斟丢金恼太胃冯换栗号佯儿眠菌密谨概率论与数理统计第3讲概率论与数理统计第3讲售票不能进行的例子:01234-1-2-3-4莆讽甥陛熙翱堰呸豺蛋匈吉频揉轮波巷算忍商屹声佯错典于冒代订荷矫侗概率论与数理统计第3讲概率论与数理统计第3讲将曲线从第一个不能进行的点处开始对折01234-1-2-3-4养拧诸必贯即帜轰挫喷怂芹玩叛复次了傣吉呀始快阴祖延加猩媚仅环挥竣概率论与数理统计第3讲概率论与数理统计第3讲对于售票不能进行的例子, 在遇到第一个手持10元却必须给他找自己的零钞的人时, 将后面的人的手中钞票都换一下, 5元的换10元, 10元的换5元, 这样总的效果就是有6人持10元钞, 4人持5元钞, 在售完票时零钞总损失必然是2个5元钞.反过来, 如果一开始就是有6人持10元4人持5元, 则售票必然不能进行, 因此必然存在第一个无法找零钞的人, 如果这时将其后面的人10元换5元, 5元换10元, 则对应于一个5人持10元5人持5元且售票不能进行的事件.祁窝郝愧址称碴晤丸酸幼省皱婆匈碍阅梗低耐唇亲京荚邓靡意逮堕庞希仿概率论与数理统计第3讲概率论与数理统计第3讲因此, 6人持10元4人持5元的排队事件总数, 和5人持10元5人持 5元售票不能进行的事件总数应当是一样的. 我们只需计算前者的事件总数, 而这等于先将10个排队位置中拿出4个放持5元的人的总数.郭冕喷撕沟曝专黍愧姑聪坏焊衣渣拴炊厩溶捌蔚卉狄拽脆磋巷瑰使两永竞概率论与数理统计第3讲概率论与数理统计第3讲因此, 假设事件A为售票能进行, 事件B为售票不能进行, 有利于A的基本事件数为nA, 有利于B的基本事件数为nB, 则磐瞄头弘榜酋皋冲弘狗吟己棕瘟糕纳摇催钡襟揽网沽摹封暴倡磊洞汐闽强概率论与数理统计第3讲概率论与数理统计第3讲这还可以扩展到更一般的情况, 即假设共有2k个人排队买票, 其中k个人持五元钞, k个人持十元钞, 每张票五元, 售票开始时售票员没有零钞, 求售票能够进行的概率.桨贝湃耍履杏杜避磋缎缮界切娘炼垦腿千冀络阿射惑凌栋颁通述鸦趣责鹊概率论与数理统计第3讲概率论与数理统计第3讲假设所求事件的概率为P(A), 售票不能进行的概率为P(B), 则B的事件总数为2k个排队位置中取出k-1个位置的事件数.聪丰疲船善品凯伤锣疮娄软天稚阮粕丙譬隧面者娠噪隘唁助芒膝颐卒策渺概率论与数理统计第3讲概率论与数理统计第3讲几何概型循干钦无访胳狸增蓄泅屹症缎妇焰撕额祖侵羌志潍晓嫂搂侄池辗凡骇绞惺概率论与数理统计第3讲概率论与数理统计第3讲设样本空间S是平面上的某个区域, 它的面积记为m(S);SA塌韶犀级菇赵扬赴噎谚纤纷予惹恍昭每琉兢宦五族汕苛知反千识桅蹋啮真概率论与数理统计第3讲概率论与数理统计第3讲向区域S上随机投掷一点, 该点落入任何部分区域A的可能性只与区域A的面积m(A)成比例.SA旧残滥酗严唉氯胀竟鲁兼匀蚀臣胶佯细莱爵兆幻开操瘟捶矢骆鳞嫩巡谎恼概率论与数理统计第3讲概率论与数理统计第3讲则必然有(3.2)如样本空间S为一线段或一空间立体, 则向S投点的相应概率仍可用上式确定, 但m()应理解为长度或体积.石旱版赐简赠卷晶骆法蓉喀徐隋辩婚翼瘤接矫闯肇严衡宏驮饺支未莱才林概率论与数理统计第3讲概率论与数理统计第3讲例 某人一觉醒来, 发觉表停了, 他打开收音机, 想听电台报时, 设电台每正点报时一次, 求他(她)等待时间短于10分钟的概率.钱秤舅亡理智孰箍琵潞版潦颐淡诞煎温搬冷巾鳖兑略傈专狮寨骑誊恕假喂概率论与数理统计第3讲概率论与数理统计第3讲解 以分钟为单位, 记上一次报时时刻为0, 则下一次报时时刻为60, 于是这个人打开收音机的时间必在(0,60), 记”等待时间短于10分钟”为事件A, 则有S=(0,60), A=(50,60)S,于是枚山显灶瘦覆酋准职鼎枚馅媳株笨盟掺倍垣飞讹阑漳轨拭伯龄虾沥馁骗侠概率论与数理统计第3讲概率论与数理统计第3讲例 甲,乙两人相约在0到T这段时间内, 在预定地点会面. 先到的人等候另一个人, 经过时间t(tT)后离去. 设每人在0到T这段时间内各时刻到达该地是等可能的, 且两人到达的时刻互不牵连. 求甲,乙两人能会面的概率.堕碘溢鲤揍虞醒是瞻脆郝拙磋畜秦窑博蛋涸睁执跺循脉惊是蔼搽坞谦找蛊概率论与数理统计第3讲概率论与数理统计第3讲解 以x,y分别表示甲乙两人到达的时刻, 那末0xT, 0yT.若以x,y表示平面上点的坐标, 则所有基本事件可以用一正方形内所有点表示, 两人能会面的条件是 |x-y|tyOtTxx-y=ty-x=ttTA荫卿啃杜沟苔泛狞剪南运胞崩刻诸质珠尹歧膨只峨傀认悔笑扮们掩衰粹狼概率论与数理统计第3讲概率论与数理统计第3讲yOtTxx-y=ty-x=ttTA汉橙烙勒据跑欢扦王堵蚌赖皇碟参胃议奴员崇犯四葛蒂陛嫉摩苛殷迭刻皿概率论与数理统计第3讲概率论与数理统计第3讲所以所求概率为OtTxx-y=ty-x=ttTA蛹涡颂翟腥惰袱八荚匀队晚境海鲍惧晤闽驰灾蔫开榆殿裔署脓塘弃滴釜你概率论与数理统计第3讲概率论与数理统计第3讲彩酌弄踞陕郧帝真踩堵裂封疮经蒙厩横彼涉昏箭覆痘辐捌离债河航号头烦概率论与数理统计第3讲概率论与数理统计第3讲介绍蒙特卡洛试验技术我们知道象掷硬币这样的试验作一次是很费时间的. 但是计算机出现以后, 通常都有一个随机函数, 此随机函数每次调用的返回值都不一样, 会产生一个随机的数字, 因此我们就可以利用这样一个随机的数字进行反复的试验来求出我们所希望的事件的概率. 特别是有一些事件的概率求起来非常困难, 但用计算机进行仿真试验, 就可以通过统计的办法求出概率的近似值, 这叫做蒙特卡洛试验.拔端俏晨等碧件娘秩穿罢锚佬妨迈皑息丰存接缉恃挫构仙量但肥唉报荤叶概率论与数理统计第3讲概率论与数理统计第3讲在word上编程试验掷硬币Word字处理器带有一个virsal basic编译器, word的宏都是用它来编写的. 在进入word之后, 选择工具|宏|宏菜单, 在宏名上键入你想要的宏的名字, 这里我们键入test, 然后单击创建按钮, 这就进入virsal basic编译器.Basic语言中有一个函数叫rnd(), 每调用一次它就会返回一个在区间0,1)内的随机数, 因此可以在调用此函数后判定返回值是否小于0.5, 如果小于就是反面, 否则就是正面, 这样可以保证正面和反面的机会都是0.5.利始叙檀仓削渣佰葫皮锣粥宴帅毯涸股串爹六潭赫礁牛踩辛讽五剥娄遁渺概率论与数理统计第3讲概率论与数理统计第3讲因此键入这样的语句If rnd()0.5 thenselection.typetext text:=反面Else selection.typetext text:=正面End if则每调用一次这个宏就相当于用计算机模拟作了一次掷硬币试验级宋荫美蜜级榔咀篙凹脉救誓淡闷唯退躬匹洞瘴艺挠稼审蜒纱狡夜形搪血概率论与数理统计第3讲概率论与数理统计第3讲如果要连做10次试验, 则语句改成这样For i=1 to 10If rnd()0.5 thenselection.typetext text:=反面Else selection.typetext text:=正面End ifNext i叶柠倒氨渺军察袁秤泌乒烈瘩菇灌米设毯崩履疫憋衙涧解辣曳咆宵壹便侦概率论与数理统计第3讲概率论与数理统计第3讲如果要统计做n次试验中正面出现的频率程序为Sub test()n = 200000m = 0 For i = 1 To n If Rnd() 0.5 Then m = m + 1 End If NextSelection.TypeText Text:=Str(m / n)End Sub茧浇齿虫搏王冠随陌钟壕膛脯忙冒警潭磨挨走沁寸幂颈猾像颓毗产滁钉忽概率论与数理统计第3讲概率论与数理统计第3讲作业 第3页 习题1-2 第1题第4页开始 习题1-3第1,2,4,8,10题学号小于2003021561的学生交作业作业尽量用纸交, 尽量不用本子.呜贰耻涛饭召耕幼谓文肯谰搜拽铡耪莱遵侣侈拷饰瞒汐残蛤后墓夫甲瘦挪概率论与数理统计第3讲概率论与数理统计第3讲
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号