资源预览内容
第1页 / 共41页
第2页 / 共41页
第3页 / 共41页
第4页 / 共41页
第5页 / 共41页
第6页 / 共41页
第7页 / 共41页
第8页 / 共41页
第9页 / 共41页
第10页 / 共41页
亲,该文档总共41页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
博 弈 论陈陈 艳艳中国地质大学(武汉)经管学院中国地质大学(武汉)经管学院20102010年秋年秋7/27/2024博弈论(陈艳)参考书目o张维迎张维迎博弈论与信息经济学博弈论与信息经济学,上海:上海三联书店、,上海:上海三联书店、上海人民出版社,上海人民出版社,20012001;o张守一,信息经济学,辽宁人民出版社,张守一,信息经济学,辽宁人民出版社,19921992年年o王则柯,博弈论平话,中国经济出版社,王则柯,博弈论平话,中国经济出版社,19991999年年o施锡铨,博弈论,上海财经大学出版社,施锡铨,博弈论,上海财经大学出版社,20002000年年o谢识予,经济博弈论,复旦大学出版社,谢识予,经济博弈论,复旦大学出版社,20022002年年o罗伯特罗伯特吉本斯,吉本斯,博弈论基础博弈论基础,北京:中国社会科,北京:中国社会科学出版社,学出版社,2000 2000 o杰克杰克赫什莱弗、约翰赫什莱弗、约翰GG赖利(著),赖利(著),不确定性不确定性与信息分析与信息分析,北京:中国社会科学出版社,北京:中国社会科学出版社,200020007/27/2024博弈论(陈艳)导论:博弈论与经济学7/27/2024博弈论(陈艳)本章主要内容本章主要内容o博弈论的经典案例博弈论的经典案例o博弈论与主流经济学博弈论与主流经济学o博弈论与诺贝尔经济学奖博弈论与诺贝尔经济学奖o博弈论的基本类型博弈论的基本类型7/27/2024博弈论(陈艳)0.1博弈论经典案例o海盗分金海盗分金o经济学上有个经济学上有个“海盗分金海盗分金”模型,是说模型,是说5 5个海盗抢得个海盗抢得100100枚金币,他们按抽签的顺序依次提方案:首先由枚金币,他们按抽签的顺序依次提方案:首先由1 1号提出分配方案,然后号提出分配方案,然后5 5人表决,超过半数同意方人表决,超过半数同意方案才被通过,否则他将被扔入大海喂鲨鱼,依此类案才被通过,否则他将被扔入大海喂鲨鱼,依此类推。推。o假定假定“每个海盗都是绝顶聪明且很理智每个海盗都是绝顶聪明且很理智”,那么,那么“第一个海盗提出怎样的分配方案才能够使自己的收第一个海盗提出怎样的分配方案才能够使自己的收益最大化?益最大化?”7/27/2024博弈论(陈艳)o推理过程是这样的:从后向前推,如果推理过程是这样的:从后向前推,如果1-31-3号海盗都喂了鲨鱼,只剩号海盗都喂了鲨鱼,只剩4 4号和号和5 5号的话,号的话,5 5号一定投反对票让号一定投反对票让4 4号喂鲨鱼,以独吞全部金币。所号喂鲨鱼,以独吞全部金币。所以,以,4 4号惟有支持号惟有支持3 3号才能保命。号才能保命。3 3号知道这一点,就会提(号知道这一点,就会提(100100,0 0,0 0)的分配方案,对)的分配方案,对4 4号、号、5 5号一毛不拔而将全部金币归为已有,因为号一毛不拔而将全部金币归为已有,因为他知道他知道4 4号一无所获但还是会投赞成票,再加上自己一票他的方案即号一无所获但还是会投赞成票,再加上自己一票他的方案即可通过。不过,可通过。不过,2 2号推知到号推知到3 3号的方案,就会提出(号的方案,就会提出(9898,0 0,1 1,1 1)的)的方案,即放弃方案,即放弃3 3号,而给予号,而给予4 4号和号和5 5号各一枚金币。由于该方案对于号各一枚金币。由于该方案对于4 4号号和和5 5号来说比在号来说比在3 3号分配时更为有利,他们将支持他而不希望他出局而号分配时更为有利,他们将支持他而不希望他出局而由由3 3号来分配。这样,号来分配。这样,2 2号将拿走号将拿走9898枚金币。不过,枚金币。不过, 2 2号的方案会被号的方案会被1 1号所洞悉,号所洞悉,1 1号并将提出(号并将提出(97 97 ,0 0,1 1,2 2,0 0)或()或(9797,0 0,1 1,0 0,2 2)的方案,即放弃的方案,即放弃2 2号,而给号,而给3 3号一枚金币,同时给号一枚金币,同时给4 4号(或号(或5 5号)号)2 2枚金枚金币。由于币。由于1 1号的这一方案对于号的这一方案对于3 3号和号和4 4号(或号(或5 5号)来说,相比号)来说,相比2 2号分配号分配时更优,他们将投时更优,他们将投1 1号的赞成票,再加上号的赞成票,再加上1 1号自己的票,号自己的票,1 1号的方案可号的方案可获通过,获通过,9797枚金币可轻松落入囊中。这无疑是枚金币可轻松落入囊中。这无疑是1 1号能够获取最大收益号能够获取最大收益的方案了!的方案了! 7/27/2024博弈论(陈艳)o“海盗分金海盗分金”其实是一个高度简化和抽象的模型,其实是一个高度简化和抽象的模型,体现了博弈的思想。体现了博弈的思想。o模型任意改变一个假设条件,最终结果都不一样。模型任意改变一个假设条件,最终结果都不一样。而现实世界远比模型复杂。而现实世界远比模型复杂。 o首先,现实中肯定不会是人人都首先,现实中肯定不会是人人都“绝对理性绝对理性”。 o如果某人偏好看同伙被扔进海里喂鲨鱼。如果某人偏好看同伙被扔进海里喂鲨鱼。 o再就是俗话所说的再就是俗话所说的“人心隔肚皮人心隔肚皮”。由于信息不对。由于信息不对称,谎言和虚假承诺就大有用武之地,而阴谋也会称,谎言和虚假承诺就大有用武之地,而阴谋也会像杂草般疯长,并借机获益。像杂草般疯长,并借机获益。 7/27/2024博弈论(陈艳)囚徒困境 o假设警察局抓住了两个合伙犯罪的嫌疑犯,但获假设警察局抓住了两个合伙犯罪的嫌疑犯,但获得的证据并不十分确切,对于两者的量刑就可能得的证据并不十分确切,对于两者的量刑就可能取决于两者对于犯罪事实的供认。警察局将这两取决于两者对于犯罪事实的供认。警察局将这两名嫌疑犯分别关押以防他们串供。两名囚徒明白,名嫌疑犯分别关押以防他们串供。两名囚徒明白,如果他们都交代犯罪事实,则可能将各被判刑如果他们都交代犯罪事实,则可能将各被判刑5 5年;如果他们都不交代,则有可能只会被以较轻年;如果他们都不交代,则有可能只会被以较轻的妨碍公务罪各判的妨碍公务罪各判1 1年;如果一人交代,另一人年;如果一人交代,另一人不交代,交代者有可能会被立即释放,不交代者不交代,交代者有可能会被立即释放,不交代者则将可能被重判则将可能被重判8 8年。年。 7/27/2024博弈论(陈艳)囚徒困境囚徒困境个人理性最终导致集体理性的缺失个人理性最终导致集体理性的缺失7/27/2024博弈论(陈艳)o对于两个囚徒总体而言,他们设想的最好的策略对于两个囚徒总体而言,他们设想的最好的策略可能是都不交代。但任何一个囚徒在选择不交代可能是都不交代。但任何一个囚徒在选择不交代的策略时,都要冒很大的风险,一旦自己不交代的策略时,都要冒很大的风险,一旦自己不交代而另一囚徒交代了,自己就将可能处于非常不利而另一囚徒交代了,自己就将可能处于非常不利的境地。对于囚徒的境地。对于囚徒A A而言,不管囚徒而言,不管囚徒B B采取何种策采取何种策略,他的最佳策略都是交代。对于囚徒略,他的最佳策略都是交代。对于囚徒B B而言也而言也是如此。最后两人都会选择交代。是如此。最后两人都会选择交代。7/27/2024博弈论(陈艳)一报还一报o这里与囚徒困境案例中有个不同之处:他们不只玩一遍这里与囚徒困境案例中有个不同之处:他们不只玩一遍这个游戏,而是一遍一遍地玩上这个游戏,而是一遍一遍地玩上200200次。这就是博弈论专次。这就是博弈论专家所谓的重复的囚徒困境,它更逼真地反映了具有经常家所谓的重复的囚徒困境,它更逼真地反映了具有经常而长期性的人际关系。而且,这种重复的游戏允许程序而长期性的人际关系。而且,这种重复的游戏允许程序在做出合作或背叛的抉择时参考对手程序前几次的选择。在做出合作或背叛的抉择时参考对手程序前几次的选择。o一个程序总是不管对手作何种举动都采取合作的态度吗一个程序总是不管对手作何种举动都采取合作的态度吗?或者,它能总是采取背叛行动吗?它是否应该对对手?或者,它能总是采取背叛行动吗?它是否应该对对手的举动回之以更为复杂的举措?如果是,那会是怎么样的举动回之以更为复杂的举措?如果是,那会是怎么样的举措呢?的举措呢?o竞赛的桂冠属于其中最简单的策略:一报还一报(竞赛的桂冠属于其中最简单的策略:一报还一报(TIT TIT FOR TATFOR TAT)。)。7/27/2024博弈论(陈艳)o它总是以合作开局,但从此以后就采取以其人之道还治其它总是以合作开局,但从此以后就采取以其人之道还治其人之身的策略。也就是说,一报还一报的策略实行了胡萝人之身的策略。也就是说,一报还一报的策略实行了胡萝卜加大棒的原则。它永远不先背叛对方,从这个意义上来卜加大棒的原则。它永远不先背叛对方,从这个意义上来说它是善意的。它会在下一轮中对对手的前一次合作给予说它是善意的。它会在下一轮中对对手的前一次合作给予回报(哪怕以前这个对手曾经背叛过它),从这个意义上回报(哪怕以前这个对手曾经背叛过它),从这个意义上来说它是宽容的。但它会采取背叛的行动来惩罚对手前一来说它是宽容的。但它会采取背叛的行动来惩罚对手前一次的背叛,从这个意义上来说它又是强硬的。而且,它的次的背叛,从这个意义上来说它又是强硬的。而且,它的策略极为简单,对程序一望便知其用意何在,从这个意义策略极为简单,对程序一望便知其用意何在,从这个意义来说它又是简单明了的。来说它又是简单明了的。o具备以下特点的人,将总会是赢家:具备以下特点的人,将总会是赢家:1 1善意的善意的 ; 2 2宽宽容的;容的; 3 3强硬的;强硬的; 4 4简单明了的。简单明了的。 7/27/2024博弈论(陈艳)智猪博弈 o假设猪圈里有一大一小两只猪,猪圈的一头假设猪圈里有一大一小两只猪,猪圈的一头有一个猪食槽,另一头有一个控制猪食供应有一个猪食槽,另一头有一个控制猪食供应的按钮,揿一下按钮会有的按钮,揿一下按钮会有1010个单位的猪食进个单位的猪食进槽。若小猪去揿,大猪先吃,大猪可吃到槽。若小猪去揿,大猪先吃,大猪可吃到9 9个个单位,小猪揿好后奔过来,则只能吃到单位,小猪揿好后奔过来,则只能吃到1 1个单个单位;若大猪去揿,小猪先吃,小猪可吃到位;若大猪去揿,小猪先吃,小猪可吃到4 4个个单位,大猪吃到单位,大猪吃到6 6个单位;若同时去揿,奔过个单位;若同时去揿,奔过来再同时吃,大猪可吃到来再同时吃,大猪可吃到7 7个单位,小猪吃到个单位,小猪吃到3 3个单位。个单位。 7/27/2024博弈论(陈艳)智猪博弈小猪小猪按按 等待等待大猪大猪按按等待等待5,14,49,-10,07/27/2024博弈论(陈艳)o在这种情况下,不论大猪采取何种策略,小猪的在这种情况下,不论大猪采取何种策略,小猪的最佳策略是等待,即在食槽边等待大猪去揿按钮,最佳策略是等待,即在食槽边等待大猪去揿按钮,然后坐享其成。而由于小猪总是会选择等待,大然后坐享其成。而由于小猪总是会选择等待,大猪无奈之下只好去揿按钮。这种策略组合就是名猪无奈之下只好去揿按钮。这种策略组合就是名闻遐迩的闻遐迩的“纳什均衡纳什均衡”。它指的是,在给定一方。它指的是,在给定一方采取某种策略的条件下,另一方所采取的最佳策采取某种策略的条件下,另一方所采取的最佳策略略( (此处为大猪揿按钮此处为大猪揿按钮) ), 多劳者不多得。多劳者不多得。7/27/2024博弈论(陈艳)斗鸡博弈o两只公鸡面对面争斗,继续斗下去,两败俱伤,一两只公鸡面对面争斗,继续斗下去,两败俱伤,一方退却便意味着认输。在这样的博弈中,要想取胜,方退却便意味着认输。在这样的博弈中,要想取胜,就要在气势上压倒对方,至少要显示出破釜沉舟、就要在气势上压倒对方,至少要显示出破釜沉舟、背水一战的决心来,以迫使对方退却。但到最后的背水一战的决心来,以迫使对方退却。但到最后的关键时刻,必有一方要退下来,除非真正抱定鱼死关键时刻,必有一方要退下来,除非真正抱定鱼死网破的决心。网破的决心。o如两人反向过同一独木桥,一般来说,必有一人选如两人反向过同一独木桥,一般来说,必有一人选择后退。在该种博弈中,非理性、非理智的形象塑择后退。在该种博弈中,非理性、非理智的形象塑造往往是一种可选择的策略运用。如那种看上去不造往往是一种可选择的策略运用。如那种看上去不把自己的生命当回事的人,或者看上去有点醉醺醺、把自己的生命当回事的人,或者看上去有点醉醺醺、傻乎乎的人,往往能逼退独木桥上的另一人。傻乎乎的人,往往能逼退独木桥上的另一人。7/27/2024博弈论(陈艳)斗鸡博弈( (胆小鬼博弈胆小鬼博弈) )B进进 退退A进进退退-3,-32,00,20,07/27/2024博弈论(陈艳)性别战o谈恋爱中的男女通常是共渡周末而不愿意分开活动谈恋爱中的男女通常是共渡周末而不愿意分开活动的。但对于周末干什么,男女双方各自有着自己的的。但对于周末干什么,男女双方各自有着自己的偏好。男方喜欢看足球比赛,女方喜欢看电影。偏好。男方喜欢看足球比赛,女方喜欢看电影。 o在这个博弈中,存在着两个纳什均衡。男女双方或在这个博弈中,存在着两个纳什均衡。男女双方或者一起去看足球,或者一起去看电影。如果没有进者一起去看足球,或者一起去看电影。如果没有进一步的信息,我们无法确定男女双方在上述博弈中一步的信息,我们无法确定男女双方在上述博弈中会作出什么选择。会作出什么选择。 o实际生活中,也许是这次看足球,下次看电影,如实际生活中,也许是这次看足球,下次看电影,如此循环,形成一种默契。这里还有一个先动优势,此循环,形成一种默契。这里还有一个先动优势,若男的买票,两人就出现在足球场,若女的买票,若男的买票,两人就出现在足球场,若女的买票,两人就会在电影院。两人就会在电影院。7/27/2024博弈论(陈艳)性别战女女足球足球 芭芭蕾蕾男男足球足球芭蕾芭蕾2,10,00,01,2先动优势所形成的先动优势所形成的“解解”形成的机会形成的机会7/27/2024博弈论(陈艳)o“博弈论博弈论”的英语原文是的英语原文是Game TheoryGame Theory,直译过来就是游戏论、,直译过来就是游戏论、运动论或竞赛论。譬如在足球比赛中,双方都想在努力巩固防运动论或竞赛论。譬如在足球比赛中,双方都想在努力巩固防守的同时,积极进攻以置对方于守的同时,积极进攻以置对方于“死地死地”。这种行为就是一种。这种行为就是一种博弈。博弈。“弈弈”在汉语中是下棋的意思,下棋中的双方行为特征在汉语中是下棋的意思,下棋中的双方行为特征也如同足球比赛中双方的行为。当然,扩展开来讲,企业之间也如同足球比赛中双方的行为。当然,扩展开来讲,企业之间的竞争、国家之间的角力等等,都是的竞争、国家之间的角力等等,都是“游戏游戏”,只是游戏的内,只是游戏的内容不同而已。容不同而已。o博弈论是研究决策主体的行为发生直接相互作用时候的决策以博弈论是研究决策主体的行为发生直接相互作用时候的决策以及这种决策的均衡问题。及这种决策的均衡问题。o我们身边充满了博弈,或者说,我们身边的许多行为、现象都我们身边充满了博弈,或者说,我们身边的许多行为、现象都可用博弈来概括。可用博弈来概括。“博弈论博弈论”不仅属于经济学,也理应属于社不仅属于经济学,也理应属于社会学、政治学、心理学、历史学等,这些学科也有理由分享会学、政治学、心理学、历史学等,这些学科也有理由分享“博弈论博弈论”那旖旎的学术风光和精细的分析技巧。那旖旎的学术风光和精细的分析技巧。7/27/2024博弈论(陈艳)0.2博弈论与主流经济学o新古典经济学是价格理论,它有两个基本的假定:(新古典经济学是价格理论,它有两个基本的假定:(1 1)市场参)市场参与者的数量足够多从而市场是竞争性的,(与者的数量足够多从而市场是竞争性的,(2 2)参与人之间不存)参与人之间不存在信息不对称问题。在信息不对称问题。 o但这两个假定在现实中一般是不满足的。首先,在现实中,买但这两个假定在现实中一般是不满足的。首先,在现实中,买卖双方的人数常常是非常有限的,因由市场是不完全竞争的。卖双方的人数常常是非常有限的,因由市场是不完全竞争的。在这样的市场上,人们之间的行为是相互影响的,一个人的决在这样的市场上,人们之间的行为是相互影响的,一个人的决策必须考虑对方的反应,这就是博弈论要研究的问题。策必须考虑对方的反应,这就是博弈论要研究的问题。 o其次,现实中市场参与者之间的信息是不对称的。当出现这种其次,现实中市场参与者之间的信息是不对称的。当出现这种情况时,任何一个有效的制度安排必须满足情况时,任何一个有效的制度安排必须满足“激励相容激励相容”。不。不完全信息的存在就使得价格制度不能有效地解决合作与冲突,完全信息的存在就使得价格制度不能有效地解决合作与冲突,需要非价格的制度安排。而非价格的制度安排的最显著特征是需要非价格的制度安排。而非价格的制度安排的最显著特征是参与者之间的行为的互动。当人们的视线从价格制度转向非价参与者之间的行为的互动。当人们的视线从价格制度转向非价格制度时,博弈论就成为经济学的基石格制度时,博弈论就成为经济学的基石 7/27/2024博弈论(陈艳)传统微观经济学与博弈论的比较传统微观经济学与博弈论的比较o传统微观经济学的个人决策是在给定一个价格参数和传统微观经济学的个人决策是在给定一个价格参数和收入的条件下最大化自己的效用,个人的效用与其他收入的条件下最大化自己的效用,个人的效用与其他人无涉,所有其他人的行为都被总结在人无涉,所有其他人的行为都被总结在“价格价格”参数参数之中之中o博弈论中,个人效用不仅依赖于自己的选择,还依赖博弈论中,个人效用不仅依赖于自己的选择,还依赖于他人的选择,研究在存在外部经济条件下的个人选于他人的选择,研究在存在外部经济条件下的个人选择问题择问题o事实上事实上,行为主体的数量通常不多行为主体的数量通常不多,相互之间存在明显相互之间存在明显影响影响o经济学对博弈论寄予厚望,认为用博弈论可以重写经经济学对博弈论寄予厚望,认为用博弈论可以重写经济学原理济学原理o博弈论改写经济学,从放宽新古典的完全竞争和完全博弈论改写经济学,从放宽新古典的完全竞争和完全信息两个条件展开信息两个条件展开7/27/2024博弈论(陈艳)o认为博弈论进入主流经济学,反映了经济学发展的下述认为博弈论进入主流经济学,反映了经济学发展的下述趋势:趋势: o一是经济学的对象越来越转向个体,即使是宏观经济学,一是经济学的对象越来越转向个体,即使是宏观经济学,也日益强调其微观基础的个人。研究个体的消费、投资也日益强调其微观基础的个人。研究个体的消费、投资行为,需要博弈论。行为,需要博弈论。 o二是经济学越来越转向人与人之间的研究,特别是人与二是经济学越来越转向人与人之间的研究,特别是人与人之间行为的相互影响和作用,人们之间的利益冲突与人之间行为的相互影响和作用,人们之间的利益冲突与一致,竞争与合作的研究。一致,竞争与合作的研究。 o三是随着对信息的研究,经济学越来越重视信息问题。三是随着对信息的研究,经济学越来越重视信息问题。因为它是人们决策的依据,理所当然地成为博弈论的主因为它是人们决策的依据,理所当然地成为博弈论的主战场。战场。 7/27/2024博弈论(陈艳)0.30.3博弈论与诺贝尔经济学奖博弈论与诺贝尔经济学奖7/27/2024博弈论(陈艳)1994年诺贝尔经济学奖获得者美国人约翰美国人约翰- -海萨尼海萨尼( (John C. John C. HarsanyiHarsanyi) ) 和美和美国人约翰国人约翰- -纳什纳什( (John F. Nash Jr.)John F. Nash Jr.)以及德以及德国人莱因哈德国人莱因哈德- -泽尔腾泽尔腾( (ReinhardReinhard SeltenSelten) ) 获奖理由:在非合作博弈的均衡分析理论方获奖理由:在非合作博弈的均衡分析理论方面做出了开创性的贡献,对博弈论和经济学面做出了开创性的贡献,对博弈论和经济学产生了重大影响产生了重大影响 。 7/27/2024博弈论(陈艳)约翰约翰纳什纳什1928年生于美国年生于美国约翰约翰海萨海萨尼尼19201920年生于年生于美国美国莱因德莱因德泽泽尔腾尔腾,1930,1930年生于德国年生于德国7/27/2024博弈论(陈艳)1996年诺贝尔经济学奖获得者英国人詹姆斯英国人詹姆斯莫里斯莫里斯 ( (James A. James A. MirrleesMirrlees) )和美国人威廉和美国人威廉- -维克瑞维克瑞( (William William VickreyVickrey) ) 获奖理由:前者在信息经济学理论领域做出获奖理由:前者在信息经济学理论领域做出了重大贡献,尤其是不对称信息条件下的了重大贡献,尤其是不对称信息条件下的经济激励理论的论述;后者在信息经济学、经济激励理论的论述;后者在信息经济学、激励理论、博弈论等方面都做出了重大贡激励理论、博弈论等方面都做出了重大贡献。献。7/27/2024博弈论(陈艳)詹姆斯詹姆斯莫里斯莫里斯19361936年生于英国年生于英国威廉维克瑞,1914-1996,生于美国7/27/2024博弈论(陈艳)2001年诺贝尔经济学奖获得者三位美国学者乔治三位美国学者乔治- -阿克尔洛夫阿克尔洛夫( (George A. George A. AkerlofAkerlof) )、迈克尔迈克尔- -斯彭斯斯彭斯( (A. Michael A. Michael Spence)Spence)和约瑟夫和约瑟夫- -斯蒂格利茨斯蒂格利茨( (Joseph Joseph E. E. StiglitzStiglitz) ) 获奖理由:在获奖理由:在“对充满不对称信息市场进对充满不对称信息市场进行分析行分析”领域做出了重要贡献。领域做出了重要贡献。 7/27/2024博弈论(陈艳)约瑟夫斯蒂格利茨,1943年生于美国的印第安纳州,1967年获美国麻省理工学院博士头衔,曾担任世界银行的首席经济学家,现任美国哥伦比亚大学经济学教授乔治阿克尔洛夫1940年生于美国的纽黑文,1966年获美国麻省理工学院博士头衔,现为美国加利福尼亚州大学经济学教授。迈克尔斯彭斯1948年生于美国的新泽西,1972年获美国哈佛大学博士头衔,现兼任美国哈佛和斯坦福两所大学的教授。7/27/2024博弈论(陈艳)2005年诺贝尔经济学奖获得者以色列经济学家罗伯特奥曼以色列经济学家罗伯特奥曼(Robert J. Robert J. AumannAumann)和美国经济和美国经济学家托马斯学家托马斯谢林(谢林(Thomas C. Thomas C. SchellingSchelling) 获奖原因:获奖原因:“通过博弈论分析加强了通过博弈论分析加强了我们对冲突和合作的理解我们对冲突和合作的理解”所作出所作出的贡献而获奖。的贡献而获奖。 7/27/2024博弈论(陈艳) 罗伯特奥曼 托马斯谢林7/27/2024博弈论(陈艳)0.4博弈论的基本类型o合作博弈与非合作博弈o合作博弈(合作博弈(cooperative gamecooperative game)o 达成有约束力的协议(达成有约束力的协议(bindingbinding agreement agreement)强)强调团体理性,强调效率、公正、公平调团体理性,强调效率、公正、公平o非合作博弈(非合作博弈(non-cooperative gamenon-cooperative game)o 不能达成有约束力的协议。强调个人理性,个人不能达成有约束力的协议。强调个人理性,个人最优决策,其结果可能有效率,也可能无效率。最优决策,其结果可能有效率,也可能无效率。7/27/2024博弈论(陈艳)o非合作博弈有不同的种类:非合作博弈有不同的种类:n从行动顺序角度:从行动顺序角度:o静态博弈静态博弈。参与人同时选择行动参与人同时选择行动o动态博弈。参与人的行动有先后顺序动态博弈。参与人的行动有先后顺序n从拥有信息角度:从拥有信息角度:o完全信息博弈。每个参与人对所有其他参与人的特征、完全信息博弈。每个参与人对所有其他参与人的特征、战略空间、支付函数有准确的知识战略空间、支付函数有准确的知识o不完全信息博弈。不完全信息博弈。7/27/2024博弈论(陈艳)非合作博弈的基本分类非合作博弈的基本分类行动顺序信息静态动态完全信息完全信息静态博弈纳什均衡纳什(1950,1951)完全信息动态博弈子博弈精练纳什均衡泽尔腾(1965)不完全信息不完全信息静态博弈贝叶斯纳什均衡海萨尼(1967-1968)不完全信息动态博弈精练贝叶斯纳什均衡泽尔腾(1965)Kreps和Wilson(1982)Fudenberg和Tirole(1991)7/27/2024博弈论(陈艳)静态博弈与动态博弈(staticgamesanddynamicgames)o从参与人行动的先后顺序:静态博弈和动态博弈从参与人行动的先后顺序:静态博弈和动态博弈o静态博弈:参与人同时选择行动或非同时行动但后行动静态博弈:参与人同时选择行动或非同时行动但后行动者并不知道前行动者采取了什么具体行动;者并不知道前行动者采取了什么具体行动;o动态博弈:参与人行动有先后顺序,且后行动者能够观动态博弈:参与人行动有先后顺序,且后行动者能够观察先行动者选择的行动。察先行动者选择的行动。7/27/2024博弈论(陈艳)完全信息博弈与不完全信息博弈(gamesofcompleteinformationandgamesofincompleteinformation)o参与人对其他参与人(对手)的特征、战略空间及支参与人对其他参与人(对手)的特征、战略空间及支付函数的知识:完全信息博弈和不完全信息博弈。付函数的知识:完全信息博弈和不完全信息博弈。v完全信息:每一个参与人对所有其他参与人的(对手)完全信息:每一个参与人对所有其他参与人的(对手)的特征、战略空间及支付函数有准确的的特征、战略空间及支付函数有准确的 知识,否则为知识,否则为不完全信息。不完全信息。7/27/2024博弈论(陈艳)完美信息博弈与不完美信息博弈(gameswithperfectinformationandgameswithimperfectinformation)o是关于动态博弈进行过程之中面临决策或者行动的参与人对于博弈进行迄今的历史是否清楚的一种刻划。o如果在博弈进行过程中的每一时刻,面临决策或者行动的参与人,对于博弈进行到这个时刻为止所有参与人曾经采取的决策或者行动完全清楚,则称为完美信息博弈;否则为不完美信息。7/27/2024博弈论(陈艳)零和博弈与非零和博弈(zero-sumgameandnon-zero-sumgame)o如果一个博弈在所有各种对局下全体参与人之得益总和总是保持为零,这个博弈就叫零和博弈;o相反,如果一个博弈在所有各种对局下全体参与人之得益总和不总是保持为零,这个博弈就叫非零和博弈。o零和博弈是利益对抗程度最高的博弈。7/27/2024博弈论(陈艳)常和博弈与非常和博弈(constant-sumgameandvariable-sumgame)o如果一个博弈在所有各种对局下全体参与人之得益总和总是保持为一个常数,这个博弈就叫常和博弈;o相反,如果一个博弈在所有各种对局下全体参与人之得益总和不总是保持为一个常数,这个博弈就叫非常和博弈。o常和博弈也是利益对抗程度最高的博弈。o非常和(变和)博弈蕴含双赢或多赢。7/27/2024博弈论(陈艳)案例案例o两家房地产开发商两家房地产开发商A A、B B正在考虑是否要在北正在考虑是否要在北京的某一地段开发一栋新的写字楼。开发要京的某一地段开发一栋新的写字楼。开发要投入投入1 1亿资金,不开发,投入为亿资金,不开发,投入为0 0。o假定,如果市场上有两栋楼出售,需求大时,假定,如果市场上有两栋楼出售,需求大时,每栋售价为每栋售价为1.41.4亿元,需求小时,售价为亿元,需求小时,售价为70007000万元;如果市场上只有一栋楼出售,需万元;如果市场上只有一栋楼出售,需求大时售价为求大时售价为1.81.8亿元,需求小时为亿元,需求小时为1.11.1亿元。亿元。o请写出该房地产开发博弈的战略式表述。请写出该房地产开发博弈的战略式表述。7/27/2024博弈论(陈艳)
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号