资源预览内容
第1页 / 共65页
第2页 / 共65页
第3页 / 共65页
第4页 / 共65页
第5页 / 共65页
第6页 / 共65页
第7页 / 共65页
第8页 / 共65页
第9页 / 共65页
第10页 / 共65页
亲,该文档总共65页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
2. 主量子数主量子数 n = 4 的量子态中,角量子数的量子态中,角量子数 l 的可能取值为的可能取值为 ;磁量子数;磁量子数 ml 的可能取值为的可能取值为 。 2,30,1,2,31. 根根据据量量子子力力学学理理论论,原原子子内内电电子子的的量量子子态态由由 ( (n,l,ml,ms) ) 四四个个量量子子数数表表征征。那那么么,处处于于基基态态的的氦氦原原子子内内两两个个电电子子的的量量子子 态可由态可由 和和 两组量子态表征。两组量子态表征。4. 电子的自旋磁量子数电子的自旋磁量子数 ms 只能取只能取 和和 两个值。两个值。+1/ /2- -1/ /25. 在主量子数在主量子数 n = 2,自旋磁量子数,自旋磁量子数 ms = 1/ /2 的量子态中,能够的量子态中,能够 填充的最大电子数是填充的最大电子数是 。43. 根根据据量量子子力力学学理理论论,氢氢原原子子中中电电子子的的角角动动量量 的的大大小小 L 由由角角量量子子数数 l 决决定定,为为 ,电电子子角角动动量量在在外外磁磁场场的的分分量量值值 Lz 轨轨道道磁磁量量子子数数 ml 决决定定,为为 ,当当主主量量子子数数 n = 3 时时,电电子子角角动动量量大大小小的的可可能能取取为为 ,电电 子子 角角 动动 量量 在在 外外 磁磁 场场 的的 分分 量量 值值 可可 能能 为为 。练习答案练习答案0,1,B若若氢氢原原子子中中的的电电子子处处于于主主量量子子数数 n = 3 的的能能级级,则则电电子子轨轨道道角角动动量量 L 和和轨轨道道角角动动量量在在外外磁磁场场方方向向的的分分量量 Lz 可可能能取取的的值分别为值分别为( (A) ) L = ,2,3;Lz = 0, , 2, 3。 ( (B) ) L = 0, , ;Lz = 0, , 2。 ( (C) ) L = 0,2;Lz = 0, , 2。 ( (D) ) L = , , ;Lz = 0, , 2, 3。 B在氢原子的在氢原子的 L 壳层中,电子可能具有的量子数壳层中,电子可能具有的量子数( (n,l,ml,ms) )是是 ( (A)()(1,0,0,- -1/ /2) )。( (B)()(2,1,- -1,1/ /2) )。( (C)()(2,0,1,- -1/ /2) )。( (D)()(3,1,- -1,- -1/ /2) )。C在原子的在原子的 L 壳层中,电子可能具有的四个量子数壳层中,电子可能具有的四个量子数( (n,l,ml,ms) )是是 ( (1) ) ( (2,0,1,1/ /2) )。 ( (2) ) ( (2,1,0,- -1/ /2) )。 ( (3) ) ( (2,1,1,1/ /2) )。 ( (4) ) ( (2,1,- -1,- -1/ /2) )。 以上四种取值中,哪些是正确的?以上四种取值中,哪些是正确的? ( (A) ) 只有只有 ( (1) )、( (2) ) 是正确的。是正确的。 ( (B) ) 只有只有 ( (2) )、( (3) ) 是正确的。是正确的。 ( (C) ) 只有只有 ( (2) )、( (3) )、( (4) ) 是正确的。是正确的。 ( (D) ) 全部是正确的。全部是正确的。 C氢原子中处于氢原子中处于 2p 状态的电子,描述其四个量子数状态的电子,描述其四个量子数( (n,l,ml,ms) )可能取的值为可能取的值为( (A)()(3,2,1,- -1/ /2) )。 ( (B)()(2,0,0,1/ /2) )。( (C)()(2,1,- -1,- -1/ /2) )。 ( (D)()(1,0,0,1/ /2) )。B下列各组量子数中,那一组可以描述原子中电子下列各组量子数中,那一组可以描述原子中电子的状态?的状态?( (A) ) n = 2,l = 2,ml = 0,ms = 1/ /2。( (B) ) n = 3,l = 1,ml = - -1,ms = - -1/ /2。( (C) ) n = 1,l = 2,ml = 1,ms = - -1/ /2。 ( (D) ) n = 1,l = 0,ml = 1,ms = - -1/ /2。 D直接证实了电子自旋存在的最早的实验之一是直接证实了电子自旋存在的最早的实验之一是( (A) ) 康普顿实验。康普顿实验。 ( (B) ) 卢瑟福实验。卢瑟福实验。( (C) ) 戴维逊戴维逊 - - 革末实验。革末实验。 ( (D) ) 斯特恩斯特恩 - - 盖拉赫实验。盖拉赫实验。 B氢氢原原子子的的电电子子跃跃迁迁到到 L 壳壳层层( (主主量量子子数数 n = 2) ) p 次次壳层的某量子态上,该量子态的四个量子数可能为壳层的某量子态上,该量子态的四个量子数可能为( (A) ) n = 2,l = 1,ml = 2,ms = 1/ /2。 ( (B) ) n = 2,l = 1,ml = 0,ms = - -1/ /2。 ( (C) ) n = 2,l = 0,ml = 1,ms = 1/ /2。 ( (D) ) n = 2,l = 0,ml = 0,ms = - -1/ /2。 C氩氩( (Z = 18) )原子基态的电子组态是:原子基态的电子组态是: ( (A) ) 1s2 2s8 3p8。 ( (B) ) 1s2 2s22p6 3d8。( (C) ) 1s2 2s22p6 3s23p6。 ( (D) ) 1s2 2s22p6 3p43d2。 l = 0, j = s = 1/ /2 l 0,j = l s = l 1/ /2三、电子的总的角动量三、电子的总的角动量这一角动量的合成叫这一角动量的合成叫自旋轨道耦合自旋轨道耦合j 的取值取决于的取值取决于 l 和和 s:由量子力学可知:由量子力学可知:J 也是量子化的。相应的总角也是量子化的。相应的总角动量量子数用动量量子数用 j 表示,则总角动量的值表示,则总角动量的值例:例:l =1,j =1/ /2 或或 3/ /2109.435.3例例: j = 1- -1/ /2 = 1/ /2 角动量合成角动量合成的玻尔经典矢量模型图的玻尔经典矢量模型图自旋轨道耦合使电子在自旋轨道耦合使电子在 l 0 时,其能量的单一的时,其能量的单一的值值 En,l 分裂为两个值,产生光谱的分裂为两个值,产生光谱的精细结构精细结构。电子的自旋磁距与自旋角动量电子的自旋磁距与自旋角动量 S 有关系:有关系:四、玻尔磁子四、玻尔磁子它在它在 z 方向的投影也只能取两个值,方向的投影也只能取两个值,此式所表示的磁矩值此式所表示的磁矩值 叫做叫做玻尔磁子。玻尔磁子。在磁场中能量在磁场中能量对一个孤立原子来说:对一个孤立原子来说:En,l 一个能级就分裂成了两个能级一个能级就分裂成了两个能级( (l = 0 除外除外) ),自旋向上的能级较高,自旋向下的能级较低。自旋向上的能级较高,自旋向下的能级较低。期末考试答疑安排期末考试答疑安排 时间:时间:1月月23日上午日上午9:00-12:00 下午下午1:00-4:00 地点:物理实验中心地点:物理实验中心1041. 泡利不相容原理泡利不相容原理或不能有两个电子具有相同的或不能有两个电子具有相同的 n,l,ml,ms 四个量子数。四个量子数。五、五、泡利不相容原理泡利不相容原理 ( (Pauli exclusion principle) )可计算原子内具有相同的主量子数可计算原子内具有相同的主量子数 n 的最多电子数是的最多电子数是为此获得了为此获得了 1945 年诺贝尔物理学奖。年诺贝尔物理学奖。 (W. Pauli,奥地利人,奥地利人 1900 - 1958)泡利泡利原子中不可能有两个或两个以上的电子处在同一量子状态,原子中不可能有两个或两个以上的电子处在同一量子状态,这个结果是因为:这个结果是因为:当当 n 一定,一定,l 可取可取 n 个值,个值,当当 l 一定,一定, ml 可取可取 2l + 1 个值,个值,当当 n,l, ml 一定,一定,ms 可取可取 2个值,个值,现在知道,一切微观粒子都有自旋,按自旋分类:现在知道,一切微观粒子都有自旋,按自旋分类:( (1) ) 费米子:费米子:自旋为半整数,如自旋为半整数,如 s = 1/ /2,3/ /2如电子,中子,质子,中微子,如电子,中子,质子,中微子, 服从泡利不相容原理。服从泡利不相容原理。反西格玛负超子反西格玛负超子 (王淦昌等,(王淦昌等,1959年)年)( (2) ) 玻色子:玻色子:自旋为整数,自旋为整数, 如如 s = 0,1 不服从泡利不相容原理。不服从泡利不相容原理。 介子,介子,光子光子等。等。2. 能量最小原理能量最小原理原子处于正常状态时,其中每个电子趋向占据最低能级。原子处于正常状态时,其中每个电子趋向占据最低能级。这就是能量最小原理。这就是能量最小原理。一、四个量子数一、四个量子数电子运动由四个量子数决定电子运动由四个量子数决定( (1) ) 主量子数主量子数 n: n = 1,2,3,它大体上决定原子中电子的能量它大体上决定原子中电子的能量n 越大,越大,En 值越大。值越大。( (2) ) 角量子数角量子数 l:( (轨道量子数轨道量子数) )它决定电子绕核运动的角动量的大小它决定电子绕核运动的角动量的大小,影响原子在外磁,影响原子在外磁场中的能量。场中的能量。当主量子数当主量子数 n 相同,相同,L 可有可有 n 个不同角动个不同角动量值量值,不同角量子数的电子其能量也稍有不同,不同角量子数的电子其能量也稍有不同。角动量。角动量的大小为:的大小为: 12.8.4 四个量子数和原子的壳层结构四个量子数和原子的壳层结构 ( (Electron configuration of atoms) ) ( (3) ) 轨道磁量子数轨道磁量子数 ml:它决定电子绕核运动的角动量矢量它决定电子绕核运动的角动量矢量 在外磁场中的指向在外磁场中的指向,影响原子在外磁场中的能量。影响原子在外磁场中的能量。当当 l 相同,可有相同,可有 2l + 1 个取个取向。向。角动量投影值为:角动量投影值为:( (4) ) 自旋磁量子数自旋磁量子数 ms: 它决定电子自旋角动量矢量它决定电子自旋角动量矢量 在外磁场中的指向在外磁场中的指向,也影,也影响原子在外磁场中的能量响原子在外磁场中的能量。只有二个值,即只有二个值,即 在外磁场中只有二个取向。在外磁场中只有二个取向。二、壳层和支壳层二、壳层和支壳层综上所述,基态原子的电子排布由两个原理决定:综上所述,基态原子的电子排布由两个原理决定:( (1) ) 能量最低原理;能量最低原理;( (2) ) 泡利不相容原理。泡利不相容原理。1916年柯塞耳提出原子壳层结构。年柯塞耳提出原子壳层结构。壳层:壳层:原子中具有相同主量子数原子中具有相同主量子数 n 的电子属于同一的电子属于同一( (主主) )壳层。壳层。把把 n = l, 2, 3, 4, 5, 6, 的电子壳层,分别的电子壳层,分别称为称为 K,L,M, N,O,P, 等等( (主主) )壳层。壳层。支壳层:支壳层:把把 l = 0,1,2,3,4, 的支壳层,分别用的支壳层,分别用 s,p,d,f,g, 等表示。等表示。在每一在每一( (主主) )壳层中,具有相同角量子数壳层中,具有相同角量子数 l 的电子属于的电子属于同一支壳层。同一支壳层。l 支壳层最多容纳的电子数为支壳层最多容纳的电子数为 2( (2l + 1) )原子中各壳层最多可容纳的电子数表原子中各壳层最多可容纳的电子数表0 1 2 3 4 5 6s p d f g h i 1,K 2,L 3,M 4,N 5,O 6,P 7,Q2226826101826101432261014185026101418227226101418222698 n = 3,l = 2 的电子,称为的电子,称为 3d 状态的电子。状态的电子。如:如:n = 1,l = 0 的电子,称为的电子,称为 1s 状态的电子,状态的电子,如:如:n = 2,l = 1 的电子,称为的电子,称为 2p 状态的电子,状态的电子,能级的高低主要取决于主量子数能级的高低主要取决于主量子数 n。 n 越小,能级越低。因此电子一般按照越小,能级越低。因此电子一般按照 n 由小到大的次由小到大的次序填入各能级。序填入各能级。但是,由于能级还和角量子数但是,由于能级还和角量子数 l 有些关系,所以有些关系,所以在个别在个别情况下,情况下,n 较小的壳层尚未填满时,较小的壳层尚未填满时,n 较大的壳层上就较大的壳层上就开始有电子填入了。开始有电子填入了。判断能级高低的经验公式:判断能级高低的经验公式:其值越小,能级越低。其值越小,能级越低。如如:4s ( (l = 0) )能级:能级:3d ( (l = 2) ) 能级:能级:可解释,电子先填入可解释,电子先填入 4s,后填入,后填入 3d 的特例。的特例。次壳层的电子排布称为次壳层的电子排布称为电子组态电子组态,例如:氩例如:氩( (Ar,Z =18) ) 1s22s22p63s23p6。原子中电子排布实例表原子中电子排布实例表1212 122222 2222 322422 522 6122 622 62原子原子序数序数元素元素 K L M s s p s p132457689111012HLiHeBeBNCOFNaNeMg1s,2s,2p,3s,3p,4s,3d,4p,5s,4d,5p,6s,4f,5d,6p,7s,6d,5f,7p,6f,7d 原子中具有特定原子中具有特定n,l值的电子的组合称为电子组态。值的电子的组合称为电子组态。原子原子Z电子子组态原子原子Z电子子组态氢11s钠111s22s22p63s氦氦21s2镁121s22s22p63s2锂31s22s铝131s22s22p63s23p铍41s22s2硅硅141s22s22p63s23p2硼硼51s22s22p磷磷151s22s22p63s23p3碳碳61s22s22p2硫硫161s22s22p63s23p4氮氮71s22s22p3氯171s22s22p63s23p5氧氧81s22s22p4氩181s22s22p63s23p6氟氟91s22s22p5钾191s22s22p63s23p64s氖101s22s22p6钙201s22s22p63s23p64s22. 写出磞写出磞( (B,Z = 5) )和铜和铜( (Cu,Z = 29) )等原子在基等原子在基态时的电子排布式。态时的电子排布式。解:解: 按按“常规常规”从内到外从内到外排布为排布为2 6 10 14 ( (n = 4) ) s p d f1. 根据量子力学理论,氢原子中电子的角动量为根据量子力学理论,氢原子中电子的角动量为 ,当主量子数,当主量子数 n = 3 时,电子时,电子角动量的可能取值为角动量的可能取值为 。电子角电子角动量在外场分量的可能取值为动量在外场分量的可能取值为 。例例 (1) 用用 4 个量子数个量子数描述描述原子中电子的量子态,这原子中电子的量子态,这 4 个量子数各称做什么,它们取值范围怎样?个量子数各称做什么,它们取值范围怎样? (2) 4 个量子数取值的不同组合表示不同的量子态,个量子数取值的不同组合表示不同的量子态,当当 n = 2 时,包括几个量子态?时,包括几个量子态? (3) 写出磷写出磷 (P) 的电子排布,并求每个电子的轨道的电子排布,并求每个电子的轨道角动量。角动量。答:答:(1) 4 个量子数包括:个量子数包括: 主量子数主量子数 n, n = 1,2,3, 角量子数角量子数 l, l = 0,1,2,n - - 1 轨道磁量子数轨道磁量子数 ml, ml = 0, 1, l 自旋磁量子数自旋磁量子数 ms, ms = 1/ /2(3) 按照能量最低原理和泡利不相容原理在每个量子态按照能量最低原理和泡利不相容原理在每个量子态内填充内填充 1 个电子,得个电子,得 P 的电子排布的电子排布 1s22s22p63s23p3,(2) n = 2l = 0(s)l = 1(p)ml = 0ml = - -1ml = 0ml = 1ms = 1/ /2ms = 1/ /2ms = 1/ /2ms = 1/ /22n2 = 8个个量子态量子态1s,2s,3s 电子轨道角动量为电子轨道角动量为2p,3p 电子轨道角动量为电子轨道角动量为在在 z 方向的投影可以为方向的投影可以为第第13章章 固体中的电子固体中的电子 (Electrons in solid)13.1 金属中的自由电子金属中的自由电子 一、金属的自由电子气模型一、金属的自由电子气模型 固体一般指晶体,是物质的一种凝聚态,固体一般指晶体,是物质的一种凝聚态,它的电性质、磁性质、甚至力性质都与其中的它的电性质、磁性质、甚至力性质都与其中的电子有关。电子有关。 金属中能够自由流动的公共电子称为金属中能够自由流动的公共电子称为自由自由电子电子。自由电子之间相互作用很弱,像气体分。自由电子之间相互作用很弱,像气体分子一样,弥漫在金属内部,把自由电子整体称子一样,弥漫在金属内部,把自由电子整体称为为自由电子气自由电子气。 孤立原子中的电子孤立原子中的电子 晶体晶体中的电子特别是外层电子中的电子特别是外层电子场场的的影影响响忽忽略略周周期期性性势势自由电子气自由电子气电子具有波粒二象性电子具有波粒二象性障碍物尺寸障碍物尺寸 波长波长 阴影阴影障碍物尺寸障碍物尺寸 离子间距离子间距 d电子几乎不会受正离子周期性库仑势电子几乎不会受正离子周期性库仑势场影响,只能感受到金属边界的束缚场影响,只能感受到金属边界的束缚 把金属中的公共电子近似看作处于三维无限深把金属中的公共电子近似看作处于三维无限深方势阱中的自由电子气的简化模型称为方势阱中的自由电子气的简化模型称为自由电子气自由电子气模型模型。 EOaxE1n=14E1n=29E1n=3一维无限深方势阱:一维无限深方势阱: 1 个方向驻波个方向驻波三维自由电子气:三维自由电子气: 3 个方向驻波个方向驻波二、自由电子气的费米能量:二、自由电子气的费米能量: 金属中自由电子近似处于三维无限深方势阱中,金属中自由电子近似处于三维无限深方势阱中,解定态薛定锷方程解定态薛定锷方程xyzaaa金属金属三个方向驻波三个方向驻波三个方向动量三个方向动量电子能量电子能量电子能量本征值电子能量本征值为三个方向一维无限深方势阱定态薛定谔方程能量本为三个方向一维无限深方势阱定态薛定谔方程能量本征值的和。征值的和。nx,ny,nz 分别为分别为 x,y,z 方向的量子数。方向的量子数。 用用 ( (nx,ny,nz,ms) )表示自由电子量子态表示自由电子量子态轨道量子数轨道量子数多个量子态对应一个能级多个量子态对应一个能级 E,称为,称为简并简并。与一个简并。与一个简并能级对应的量子态数目叫能级对应的量子态数目叫简并度简并度。 自旋量子数自旋量子数 ( (ms = 1/ /2) )例例 ( (2,1,1,) ) ( (2,1,1,)()(1,2,1,) ) ( (1,2,1,)()(1,1,2,) ) ( (1,1,2,) )能级简并度为能级简并度为 6。 在量子数空间在量子数空间( (即动量空间,即动量空间, ) ),量子态,量子态对应具有正整数坐标的点,对应具有正整数坐标的点,nxnynz半径为半径为 R 的球面上各点具有相同的球面上各点具有相同的的 值和相同的能量值和相同的能量一个量子态对应量子数空间一个一个量子态对应量子数空间一个单位体积,能量小于单位体积,能量小于 E 的状态数的状态数nxnynz每个轨道状态包含每个轨道状态包含 2 个自旋状态个自旋状态金属单位体积内自由电子能量小于金属单位体积内自由电子能量小于 E 的状态数为的状态数为 T = 0K 时,由时,由能量最低原能量最低原理和泡利不相容原理理和泡利不相容原理,电子一,电子一个一个地从能量最低的状态向个一个地从能量最低的状态向能量较高的状态填充,电子可能量较高的状态填充,电子可填充的最高能级叫填充的最高能级叫费米能级费米能级 EF。由由 ns = 金属中自由电子密度金属中自由电子密度 n,得费米能级,得费米能级费米能级费米能级( (能量能量) )决定于决定于 n。真空能级真空能级EF逸逸出出功功A此式说明,费米能量此式说明,费米能量仅决定于仅决定于金属的自由电子数密度。金属的自由电子数密度。费米能量费米能量 EF eV在此狭小能量区间,密集排布着在此狭小能量区间,密集排布着( (自由电子数自由电子数/ /2) )个能级,所以自个能级,所以自由电子的能量分布是准连续的。由电子的能量分布是准连续的。费米速度:费米速度:即使在绝对零度下,电子仍然剧烈地运动着。即使在绝对零度下,电子仍然剧烈地运动着。 费米温度:费米温度:费米能级:费米能级:在绝对零度时,电子可能占据的最高能级,在绝对零度时,电子可能占据的最高能级,对应的能量叫费米能量。对应的能量叫费米能量。3013.2 固体能带固体能带( (Energy band) )理论理论 金属自由电子理论忽略了正离子周期性势场对电金属自由电子理论忽略了正离子周期性势场对电子运动的影响。若考虑其作用,则产生能带。子运动的影响。若考虑其作用,则产生能带。一、固体的能带:一、固体的能带: 以两个以两个 Na 原子形成原子形成 Na2 分子为例,分子为例, 设设 1 和和 2 分别为两个分别为两个 Na 原子的价电子原子的价电子( (3s电子电子) )的波函数,的波函数, 为为 Na2 分子的共有化电子的波函数。分子的共有化电子的波函数。 波函数叠加波函数叠加 = 1 + 2 概率分布概率分布 | |2 = | 1 + 2|2 = | 1|2 + | 2|2 + 1* 2 + 1 2* 当原子相距无穷远时,交换项当原子相距无穷远时,交换项 1* 2 + 1 2* = 0当原子接近时,若当原子接近时,若 1* 2 + 1 2* 0,| |2 | 1|2 +| 2|2则形成化学键,能量则形成化学键,能量 ;否则不形成化学键,能量;否则不形成化学键,能量 。31 1 2 1 2 | |2| |2两个两个 Na 原子接近时的电子云分布和波函数原子接近时的电子云分布和波函数1. 能带的形成能带的形成r0ErNa3s( (1) ) 当原子孤立存在时,具当原子孤立存在时,具 有各自能级。有各自能级。( (2) ) 当两原子靠近时,每个当两原子靠近时,每个 能级一分为二,曲线能级一分为二,曲线 1 能量降低,形成分子;能量降低,形成分子; 曲线曲线 2 能量升高,不形能量升高,不形 成分子。成分子。r0 为键长,能级为键长,能级 E1 占据,能级占据,能级 E2 空闲。空闲。( (3) ) N 个个 Na 原子聚集时,每个能级分裂为原子聚集时,每个能级分裂为 N 个能级,个能级,一半能级占据,一半能级空闲。一半能级占据,一半能级空闲。( (4) ) 形成形成 Na 晶体时,分裂的能级晶体时,分裂的能级( (间隔极小间隔极小) )组成组成能能带带, 一半能带占据,一半能带空闲。一半能带占据,一半能带空闲。21E1E2Er3s3p4s2pr0r1能带能带能带能带不同能带之间可能发生重叠。不同能带之间可能发生重叠。 能带的形成来源于原子的相互作用,或波函数的能带的形成来源于原子的相互作用,或波函数的交叠。能带理论适用于金属、绝缘体、半导体。交叠。能带理论适用于金属、绝缘体、半导体。1. 1. 能带的形成能带的形成(2)(2)量子力学量子力学计算计算表明表明,固体中若有,固体中若有 N 个原子,个原子,由于各原子间的相互作用,对应于原来孤立由于各原子间的相互作用,对应于原来孤立原子的每一个量子化的能级,变成了原子的每一个量子化的能级,变成了 N 条靠条靠得很近的能级,是准连续的,称为得很近的能级,是准连续的,称为能带能带。能带的宽度记作能带的宽度记作 E,数量级为数量级为 E eV。若若 N 1023,则能带中两,则能带中两能级的间距约能级的间距约 10- -23 eV。离子间距离子间距a2p2s1sE0能带重叠示意图能带重叠示意图能带结构能带结构的的一般规律一般规律:1. 越是外层电子,越是外层电子, 能带越宽,能带越宽, E 越大。越大。2. 点阵间距越小,点阵间距越小, 能带越宽,能带越宽, E 越大。越大。3. 两个能带有可能重叠。两个能带有可能重叠。2. 能带中电子的排布能带中电子的排布固体中的每一个固体中的每一个电子只能处在某个能带中的电子只能处在某个能带中的某一某一能级上。能级上。电子排布原则:电子排布原则: 1. 服从服从泡里不相容原理泡里不相容原理 2. 服从服从能量最小原理能量最小原理设设孤立原子孤立原子的一个能级的一个能级 Enl,考虑自旋,考虑自旋,它它最多能最多能容纳容纳 2( (2l + 1) ) 个电子个电子。这一能级分裂成由这一能级分裂成由 N 条能级组成的能带后,能带条能级组成的能带后,能带最多能容纳最多能容纳 2N( (2l + 1) ) 个电子。个电子。并且,电子排布时,应从最低的能级排起。并且,电子排布时,应从最低的能级排起。2p、3p 能带,最多容纳能带,最多容纳 6N 个电子。个电子。例如,例如,1s、2s 能带,最多容纳能带,最多容纳 2N 个电子。个电子。2p、3p 能带,最多容纳能带,最多容纳 6N 个电子。个电子。例如,例如,1s、2s 能带,最多容纳能带,最多容纳 2N 个电子。个电子。每个能带最多每个能带最多容纳容纳 2N 个电子个电子每个能带最多容每个能带最多容纳纳 6N 个电子个电子单个单个Mg原子原子1s2s2p3s3p 晶体晶体Mg ( (N 个原子个原子) )电子排布应从最低电子排布应从最低的能级排起。的能级排起。二、固体导电性能的能带论解释二、固体导电性能的能带论解释 1. 禁带禁带由于原子的每个能级在晶体中由于原子的每个能级在晶体中要分裂成相应的一个能带,在要分裂成相应的一个能带,在两个相邻能带间,可能有一个两个相邻能带间,可能有一个不被允许的能量间隔,这个能不被允许的能量间隔,这个能量间隔称为量间隔称为禁带禁带。2. 能带的分类:满带、不满带和空带能带的分类:满带、不满带和空带满带满带:若能带中各个能级全部被电子填满,则称为满带。若能带中各个能级全部被电子填满,则称为满带。非满带非满带:若能带中只有一部分能级填入电子,则称为非满带。若能带中只有一部分能级填入电子,则称为非满带。空带空带:若能带中各个能级都没有电子填充,则称为空带。若能带中各个能级都没有电子填充,则称为空带。价带价带:价电子的能级所分裂而形成的能带称为价带。价电子的能级所分裂而形成的能带称为价带。导带导带:空带和未被价电子填满的价带称为导带。空带和未被价电子填满的价带称为导带。禁带禁带 满带满带导带导带禁带禁带空带空带非满带非满带3. 绝缘体、导体和半导体绝缘体、导体和半导体( (1) ) 绝缘体绝缘体导带导带 (空带空带)满带满带 Eg 3 eV 价带价带能带的特征:能带的特征:(1) 只有满带和空带;只有满带和空带; (2) 满带和空带之间有满带和空带之间有 较宽的禁带,禁带较宽的禁带,禁带 宽度一般大于宽度一般大于 3 eV。由于满带中的电子不参与导电,一般外加由于满带中的电子不参与导电,一般外加电场又不足以将满带中的电子激发到空带,电场又不足以将满带中的电子激发到空带,此类晶体导电性极差,称为此类晶体导电性极差,称为绝缘体绝缘体。( (2) ) 半导体半导体导电能力介于导体与绝缘体之间的晶导电能力介于导体与绝缘体之间的晶体称为体称为半导体半导体,它的能带结构也只有,它的能带结构也只有满带和空带,与绝缘体的能带相似,满带和空带,与绝缘体的能带相似,差别在于禁带宽度不同,半导体的禁差别在于禁带宽度不同,半导体的禁带宽度一般较小,在带宽度一般较小,在 2 eV 以下。以下。导带导带 (空带空带)满带满带 Eg 2 eV 价带价带( (3) ) 导体导体 一价碱金属,价带为不满带;一价碱金属,价带为不满带;导带导带(非满带非满带)满带满带 价带价带一价碱金属一价碱金属导带导带(空带空带)满带满带 价带价带二价碱金属二价碱金属空带空带满带满带 价带价带导带导带(非满带非满带)其它金属其它金属其它金属的能带,其价带为不满带,且与空带重叠。其它金属的能带,其价带为不满带,且与空带重叠。当外电场作用于晶体时,价带中的电子可以进入较高能级,从当外电场作用于晶体时,价带中的电子可以进入较高能级,从而可以形成电流,这正是导体具有良好导电性能的原因。而可以形成电流,这正是导体具有良好导电性能的原因。 二价碱金属,价带为满带,但满带与空带紧密相接或部分二价碱金属,价带为满带,但满带与空带紧密相接或部分 重叠;重叠;绝缘体与半导体的击穿绝缘体与半导体的击穿当外电场非常强时,它们的共有化电子还是当外电场非常强时,它们的共有化电子还是能越过禁带跃迁到上面的空带中的。能越过禁带跃迁到上面的空带中的。绝缘体绝缘体半导体半导体导体导体例例 固体物理中一般取脱离金属束缚的电子的能量为正固体物理中一般取脱离金属束缚的电子的能量为正值,束缚于金属中的电子的能量为负值,而刚好值,束缚于金属中的电子的能量为负值,而刚好逸出金属的静止电子的能量为零逸出金属的静止电子的能量为零( (该能级叫真空能该能级叫真空能级级) )。利用下列数据计算钠金属的费米能量和导带利用下列数据计算钠金属的费米能量和导带底能量。底能量。( (1) ) 用波长为用波长为 300nm 的单色光照射钠金的单色光照射钠金属,发出光电子的最大初动能为属,发出光电子的最大初动能为 1.84eV;( (2) ) 密密度度 971kg/ /m3,摩尔质量,摩尔质量 23.0g/ /mol。 EbEF真空能级真空能级E0 =0A导带底导带底解解:利用光电效应方程,得逸出功:利用光电效应方程,得逸出功EbEF真空能级真空能级E0 =0A导带底导带底逸出功就是电子从费米能级跃迁至真逸出功就是电子从费米能级跃迁至真空能级所吸收的能量,因此费米能量空能级所吸收的能量,因此费米能量 利用自由电子气模型费米能量公式,利用自由电子气模型费米能量公式,导带底能量为导带底能量为解解: :例例 用光来激发半导体硫化镉用光来激发半导体硫化镉( (CdS) )中的电子,使中的电子,使之能够成为载流子,光波波长最大为多少?之能够成为载流子,光波波长最大为多少?已知禁带宽度已知禁带宽度 Eg = 2.42 eV。例例 估计金刚石的电击穿场强。已知金刚石的估计金刚石的电击穿场强。已知金刚石的禁带宽度禁带宽度 Eg = 5.5 eV,电子运动的平均自,电子运动的平均自由程由程 = 0.2 m。 解解:如果金刚石内的电子在一个平均自由程的:如果金刚石内的电子在一个平均自由程的运动过程中,被电场加速获得的能量能够运动过程中,被电场加速获得的能量能够使电子从价带跃迁到导带,则金刚石就被使电子从价带跃迁到导带,则金刚石就被电击穿。电击穿。以以 Eb 表示击穿场强,则表示击穿场强,则 Eg = eEb ,由此,由此得得 13.3 半导体导电半导体导电导带导带禁带禁带价带价带Eg一、半导体导电特点:一、半导体导电特点:1. 禁带宽度禁带宽度 Eg 较小较小 ( (300K 时时 Si-1.14eV,Ge-0.67eV) ), 常温下即有少量电子被激发至导带,在电场作用下常温下即有少量电子被激发至导带,在电场作用下 形成电流,但电导率介于导体和绝缘体之间。形成电流,但电导率介于导体和绝缘体之间。2. 温度升高时,更多电子进入导带,增加电导率,有温度升高时,更多电子进入导带,增加电导率,有 热敏性和光敏性。热敏性和光敏性。3. 除电子导电外,还有空穴导电。除电子导电外,还有空穴导电。价带电子跃入导带后在价带中留下价带电子跃入导带后在价带中留下的空量子态叫的空量子态叫空穴空穴。带正单位电荷。带正单位电荷。半导体导电是半导体导电是导带电子导电导带电子导电和和价带价带空穴导电空穴导电共同起作用的结果。共同起作用的结果。二、半导体分类二、半导体分类 1. 本征半导体本征半导体 (semiconductor) 本征半导体是指本征半导体是指纯净的纯净的半导体。半导体。两个概念:两个概念:( (1) ) 电子导电电子导电半导体的载流子是电子半导体的载流子是电子( (2) ) 空穴导电空穴导电半导体的载流子是空穴半导体的载流子是空穴满带上的一个电子跃迁到空带后,满带上的一个电子跃迁到空带后,满带中出现一个空位。满带中出现一个空位。 - -e +e空带空带禁带禁带满带满带 2. 杂质半导体杂质半导体( (1) ) N 型半导体型半导体四价的本征半导体四价的本征半导体 Si、Ge等,等,掺入少量五价的掺入少量五价的杂质杂质( (impurity) ) 元素元素( (如如P、As等等) )形成电子型半形成电子型半导体,称导体,称 N 型半导体。型半导体。( (2) ) P 型半导体型半导体四价的本征半导体四价的本征半导体 Si、Ge等,掺入少量等,掺入少量三价的三价的杂质杂质元素元素 ( (如如B、Ga、In等等) )形成空穴型半导体,称形成空穴型半导体,称 P 型半导体。型半导体。例例 室温下纯硅中传导电子室温下纯硅中传导电子( (由价带进入导带的电子由价带进入导带的电子) )的数密度的数密度 n0 约为约为1016 m- -3。问多少个硅原子贡献。问多少个硅原子贡献一个传导电子?如果向其中掺入微量磷杂质,平一个传导电子?如果向其中掺入微量磷杂质,平均每均每 5 106 个硅原子有一个被磷原子取代,则传个硅原子有一个被磷原子取代,则传导电子数密度增加多少倍?导电子数密度增加多少倍? 设每个磷原子都有一设每个磷原子都有一个个 “多余的多余的” 电子进入导带。电子进入导带。 已知硅的密度和已知硅的密度和摩尔质量分别为摩尔质量分别为 2330 kg/ /m3 和和 28.1 g/ /mol。 解解:纯硅的原子数密度:纯硅的原子数密度 所以所以 nSi/ /n0 = 5 1028/ /1016 = 5 1012 个硅原子个硅原子贡献一个传导电子。可知半导体的导电能力比贡献一个传导电子。可知半导体的导电能力比金属弱得多。金属弱得多。 利用已知数据,磷杂质原子的数密度为利用已知数据,磷杂质原子的数密度为 nP = nSi/ /5 106 = 1022 m- -3由每个磷原子贡献一个传导电子可知,这也是由由每个磷原子贡献一个传导电子可知,这也是由于掺入磷杂质而增加的传导电子数密度。于掺入磷杂质而增加的传导电子数密度。所以传导电子数密度为所以传导电子数密度为 nP + n0,增加的倍数为,增加的倍数为如此微量的杂质使传导电子增加了如此微量的杂质使传导电子增加了 100 万倍!可万倍!可见,杂质半导体的导电能力比本征半导体增强非见,杂质半导体的导电能力比本征半导体增强非常显著。常显著。 13.3.2 PN 结结一、一、PN 结的形成结的形成 在在 N 型型半导体基片的一侧半导体基片的一侧掺入较高浓度的掺入较高浓度的界面附近界面附近产生了一个产生了一个阻止电子和空穴进一步扩散。阻止电子和空穴进一步扩散。电子和空穴的扩散,电子和空穴的扩散,在在 P 型和型和 N 型半导体型半导体交交P 型半导体型半导体( (补偿作用补偿作用) )。受主杂质受主杂质,内建内建( (电电) )场场 。该区就成为该区就成为N 型型P 型型 内建场大到一内建场大到一定程度,不再有净定程度,不再有净电荷的流动,达到电荷的流动,达到了新的平衡。了新的平衡。 在在 P 型型和和 N 型型交交界界面面附附近近形形成成的的这这种种特特殊殊结结构构称称为为 PN 结结( (阻阻挡挡层层,耗耗尽尽层层) ),其其厚厚度约为度约为 0.1 m。 PN 结结P 型型N 型型U0电势电势电子电势能电子电势能PN 结结NP 由于由于 PN 结的存在,结的存在,电子电子的能量应考虑进势的能量应考虑进势 这使电子能带出现弯曲:这使电子能带出现弯曲:空带空带空带空带PN 结结施主能级施主能级受主能级受主能级满带满带满带满带垒带来的垒带来的附加势能附加势能。二、二、 PN 结的单向导电性结的单向导电性1. 正向偏压正向偏压PN 结的结的 P 型区接电源正极,叫型区接电源正极,叫正向偏压。正向偏压。向向 N 区运动,区运动,阻挡层势垒阻挡层势垒降降低低、变窄,、变窄,有利于有利于空穴向空穴向 N 区运动,区运动,也有利于也有利于电子电子和和反向,反向,这些都形成这些都形成正向电流正向电流( (m级级) )。P 型型N 型型I+ 外加正向电压越外加正向电压越大,形成的正向电流大,形成的正向电流也越大,且呈也越大,且呈非线性非线性的伏安特性。的伏安特性。U( (伏伏) )302010( (毫安毫安) )正向正向00.21.0I锗管的伏安特性曲线锗管的伏安特性曲线2. 反向偏压反向偏压PN 结的结的 P 型区接电源负极,叫型区接电源负极,叫反向偏压。反向偏压。也不利于电子也不利于电子阻挡层势垒升阻挡层势垒升高、变宽,高、变宽,不利于空穴向不利于空穴向 N 区运动,区运动,和和同向,同向,会形成很弱的反向电流,会形成很弱的反向电流,称漏电流称漏电流( ( 级级) )。I无正向电流无正向电流P 型型N 型型+ 向向 P 区运动。区运动。但是由于少数载流子的存在,但是由于少数载流子的存在, 当外电场很强,反向电压超过某一数值后,当外电场很强,反向电压超过某一数值后,反向电流会急剧增大反向电流会急剧增大 反向击穿。反向击穿。V ( (伏伏) )I- -10- -20- -30 ( (微安微安) )反向反向- -20- -30 用用 PN 结的结的单向导电性,单向导电性,击穿电压击穿电压用用 PN 结的结的光生伏特效应,光生伏特效应,可制成光可制成光电池。电池。PN 结的应用:结的应用:做做整流、开关整流、开关用。用。 加反向偏压时,加反向偏压时,PN 结的伏安特性曲结的伏安特性曲线如左图。线如左图。可制成可制成晶体二极管晶体二极管( (diode) ), PN 结应用:结应用:发光二极管发光二极管太阳能光电池太阳能光电池集成电路集成电路作业作业: 第第13章:章:2,4,12,14
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号