资源预览内容
第1页 / 共85页
第2页 / 共85页
第3页 / 共85页
第4页 / 共85页
第5页 / 共85页
第6页 / 共85页
第7页 / 共85页
第8页 / 共85页
第9页 / 共85页
第10页 / 共85页
亲,该文档总共85页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
组合与组合数公式组合与组合数公式问题一:问题一:从甲、乙、丙从甲、乙、丙3名同学中选出名同学中选出2名去参名去参加某天的一项活动,其中加某天的一项活动,其中1名同学参加上午的名同学参加上午的活动,活动,1名同学参加下午的活动,有多少种不名同学参加下午的活动,有多少种不同的选法?同的选法?问题二:问题二:从甲、乙、丙从甲、乙、丙3名同学中选出名同学中选出2名去参名去参加一项活动,有多少种不同的选法?加一项活动,有多少种不同的选法?甲、乙;甲、丙;乙、丙甲、乙;甲、丙;乙、丙 有顺序有顺序无顺序无顺序 一般地,从一般地,从n个不同元素中取出个不同元素中取出m(mn)个元素个元素合成一组合成一组,叫做从,叫做从n个不同元素中取出个不同元素中取出m个元素的一个个元素的一个组合组合组合定义组合定义:排列定义排列定义: : 一般地说,从一般地说,从n n个不同元素中,取出个不同元素中,取出m (mn) m (mn) 个元素,个元素,按照一定的顺序排成一列按照一定的顺序排成一列,叫做从,叫做从 n n 个不个不同元素中取出同元素中取出 m m 个元素的一个个元素的一个排列排列. .思考思考: :排列与组合的概念,它们有什么共同点、不同点?排列与组合的概念,它们有什么共同点、不同点? 共同点共同点:都要都要“从从n个不同元素中任取个不同元素中任取m个元素个元素” 不同点不同点:对于所取出的元素,排列要对于所取出的元素,排列要“按照一定的顺序按照一定的顺序排成一列排成一列”,而组合却是,而组合却是“不管怎样的顺序合成一组不管怎样的顺序合成一组”排列排列与元素的顺序有关,而与元素的顺序有关,而组合组合则与元素的顺序无关则与元素的顺序无关 组合是选择的结果,排列组合是选择的结果,排列是选择后再排序的结果是选择后再排序的结果.想一想想一想:ab与ba是相同的排列还是相同的组合?为什么?两个相同的排列有什么特点?两个相同的组合呢?什么是两个相同的排列? 什么是两个相同的组合?相同排列:元素相同且顺序相同.相同组合:元素相同判断下列问题是组合问题还是排列问题判断下列问题是组合问题还是排列问题? (1)设集合设集合A=a,b,c,d,e,则集合,则集合A的含有的含有3个元素的个元素的子集有多少个子集有多少个?(2)某铁路线上有某铁路线上有5个车站,则这条铁路线上共需准备个车站,则这条铁路线上共需准备多少种车票多少种车票? 有多少种不同的火车票价?有多少种不同的火车票价?组合问题组合问题排列问题排列问题(3)10名同学分成人数相同的数学和英语两个学习小组,名同学分成人数相同的数学和英语两个学习小组,共有多少种分法共有多少种分法?组合问题组合问题(4)10人聚会,见面后每两人之间要握手相互问候,人聚会,见面后每两人之间要握手相互问候,共需握手多少次共需握手多少次?组合问题组合问题(5)从从4个风景点中选出个风景点中选出2个安排游览个安排游览,有多少种不同的方法有多少种不同的方法?组合问题组合问题(6)从从4个风景点中选出个风景点中选出2个个,并确定这并确定这2个风景点的游览个风景点的游览顺序顺序,有多少种不同的方法有多少种不同的方法?排列问题排列问题组合问题组合问题如如:从从 a , b , c三个不同的元素中取出两个元素的三个不同的元素中取出两个元素的所有组合分别是所有组合分别是:ab , ac , bc 如如:已知已知4个元素个元素a , b , c , d ,写出每次取出两个写出每次取出两个元素的所有组合元素的所有组合.ab c d b c d cd ab , ac , ad , bc , bd , cd(3个个)6个个练习练习: 中国、美国、古巴、俄罗斯四国女排邀中国、美国、古巴、俄罗斯四国女排邀请赛,通过单循环决出冠亚军请赛,通过单循环决出冠亚军(1 1)列出所有各场比赛的双方;)列出所有各场比赛的双方;(2 2)列出所有冠亚军的可能情况)列出所有冠亚军的可能情况。(1 1) 中国中国美国美国 中国中国古巴古巴 中国中国俄罗斯俄罗斯 美国美国古巴古巴 美国美国俄罗斯俄罗斯 古巴古巴俄罗斯俄罗斯(2)组合数合数:从从n个不同元素中取出个不同元素中取出m(mn)个元素的所有)个元素的所有组合的个数,叫做从合的个数,叫做从n个不同元素中取出个不同元素中取出m个元素的个元素的组合数合数,用符号,用符号 表示表示如如:思考思考:如何计算如何计算:写出从写出从a,b,c,d a,b,c,d 四个元素中任取三个元素的所有组合。四个元素中任取三个元素的所有组合。aabc , abd , acd , bcd .bcddbccd写出从写出从 a , b , c , d 四个元素中任取三个元素的所有排列四个元素中任取三个元素的所有排列.c d b d b c c da ca db d a d a bb c a c a bb c da c da b da b cbacd abc bac cab dab abd bad cad dac acb bca cba dba acd bcd cbd dbc adb bda cda dca adc bdc cdb dcb所有的排列为:组合排列abcabdacdbcdabc bac cabacb bca cbaabd bad dabadb bda dbaacd cad dacadc cda dcabcd cbd dbcbdc cdb dcb组合数公式组合数公式: 从从 n 个不同元中取出个不同元中取出m个元素的排列数个元素的排列数 例例1 1计算:算: 例例2求求证: 例例6 一位教练的足球队共有 17 名初级学员,他们中以前没有一人参加过比赛按照足球比赛规则,比赛时一个足球队的上场队员是11人问: (l)这位教练从这 17 名学员中可以形成多少种学员上场方案? (2)如果在选出11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事情?(2)解:(1)例例7(1)平面内有10 个点,以其中每2 个点为端点的线段共有多少条?(2)平面内有 10 个点,以其中每 2 个点为端点的有向线段共有多少条?(2)解:(1)例例8在 100 件产品中,有 98 件合格品,2 件次品从这 100 件产品中任意抽出 3 件 .(1)有多少种不同的抽法?(2)抽出的 3 件中恰好有 1 件是次品的抽法有多少种? (3)抽出的 3 件中至少有 1 件是次品的抽法有多少种?(2)解:(1)(3)法一:法二:说明:“至少”“至多”的问题,通常用分类法或间接法求解。变式:按下列条件,从12人中选出5人,有多少种不同选法?(1)甲、乙、丙三人必须当选;)甲、乙、丙三人必须当选; (2)甲、乙、丙三人不能当选;)甲、乙、丙三人不能当选;(3)甲必须当选,乙、丙不能当选;)甲必须当选,乙、丙不能当选; (4)甲、乙、丙三人只有一人当选;)甲、乙、丙三人只有一人当选;(5)甲、乙、丙三人至多)甲、乙、丙三人至多2人当选;人当选; (6)甲、乙、丙三人至少)甲、乙、丙三人至少1人当选;人当选; 组合数的两个性质组合数的两个性质 写出从写出从 a , b , c , d 四个元素中四个元素中任取三个元素的所有组合。任取三个元素的所有组合。aabc , abd , acd , bcd .bcddbccdabc abd acd bcd d c b aabc abd acd bcd 含元素含元素a 的组合数的组合数:不含元素不含元素a 的组合数的组合数:例9计算:例例10 求证求证:证明证明:例例11平面内有平面内有12个点,任何个点,任何3点不点不在同一直线上在同一直线上,以每以每3点为顶点画一个点为顶点画一个三角形三角形,一共可画多少个三角形一共可画多少个三角形?答答:一共可画一共可画220个三角形个三角形.思考交流思考交流1. 从从9名学生中选出名学生中选出3人做值日人做值日,有多有多少种不同的选法少种不同的选法?2. 有有5 本不同的书本不同的书,某人要从中借某人要从中借2本本,有多少种不同的借法有多少种不同的借法?元素相同问题隔板策略元素相同问题隔板策略应用背景:相同元素的名额分配问题应用背景:相同元素的名额分配问题 不定方程的正整数解问题不定方程的正整数解问题隔板法的使用特征:隔板法的使用特征:相同的元素分成若干部分,每部分至少一个相同的元素分成若干部分,每部分至少一个元素相同问题隔板策略例例.有有1010个运动员名额,在分给个运动员名额,在分给7 7个班,每个班,每班至少一个班至少一个, ,有多少种分配方案?有多少种分配方案? 解:因为解:因为10个名额没有差别,把它们排成个名额没有差别,把它们排成一排。相邻名额之间形成个空隙。一排。相邻名额之间形成个空隙。在个空档中选个位置插个隔板,在个空档中选个位置插个隔板,可把名额分成份,对应地分给个可把名额分成份,对应地分给个班级,每一种插板方法对应一种分法班级,每一种插板方法对应一种分法共有共有_种分法。种分法。一班二班三班四班五班六班七班将将n n个相同的元素分成个相同的元素分成m m份(份(n n,m m为正整数)为正整数), ,每份至少一个元素每份至少一个元素, ,可以用可以用m-1m-1块隔板,插入块隔板,插入n n个元素排成一排的个元素排成一排的n-1n-1个空隙中,所有分法数个空隙中,所有分法数为为回目录回目录例例 高二年级高二年级8 8个班个班, ,组织一个组织一个1212个人的年级学生分会个人的年级学生分会, ,每班要求至少每班要求至少1 1人人, ,名额分配方案有多少种名额分配方案有多少种? ?解解 此题可以转化为此题可以转化为: :将将1212个相同的白球分成个相同的白球分成8 8份份, ,有有多少种不同的分法问题多少种不同的分法问题, ,因此须把这因此须把这1212个白球排成一个白球排成一排排, ,在在1111个空档中放上个空档中放上7 7个相同的隔板个相同的隔板, ,每个空档最多每个空档最多放一个放一个, ,即可将白球分成即可将白球分成8 8份份, ,显然有显然有 种不同的放法种不同的放法, ,所以名额分配方案有所以名额分配方案有 种种. .结论结论 转化法转化法: :对于某些较复杂的、或较抽象的排列组对于某些较复杂的、或较抽象的排列组合问题,可以利用转化思想合问题,可以利用转化思想, ,将其化归为简单的、具体将其化归为简单的、具体的问题来求解的问题来求解. .分析分析 此题若直接去考虑的话此题若直接去考虑的话, ,就会比较复杂就会比较复杂. .但如果但如果我们将其转换为等价的其他问题我们将其转换为等价的其他问题, ,就会显得比较清楚就会显得比较清楚, ,方法简单方法简单, ,结果容易理解结果容易理解. .回目录回目录练练 习习(1 1)将)将1010个学生干部的培训指标分配给个学生干部的培训指标分配给7 7个不同个不同的班级,每班至少分到一个名额,不同的分配方的班级,每班至少分到一个名额,不同的分配方案共有案共有 ( )种。)种。(2)不定方程)不定方程 的正整数解的正整数解共有(共有( )组)组回目录回目录平均分组问题除法策略平均分组问题除法策略例12. 6本不同的书平均分成本不同的书平均分成3堆堆,每堆每堆2本共有本共有 多少分法?多少分法?解解: 分三步取书得分三步取书得 种方法种方法,但这里出现但这里出现 重复计数的现象重复计数的现象,不妨记不妨记6本书为本书为ABCDEF 若第一步取若第一步取AB,第二步取第二步取CD,第三步取第三步取EF 该分法记为该分法记为(AB,CD,EF),则则 中还有中还有 (AB,EF,CD),(CD,AB,EF),(CD,EF,AB) (EF,CD,AB),(EF,AB,CD)共有共有 种取法种取法 ,而而 这些分法仅是这些分法仅是(AB,CD,EF)一种分法一种分法,故共故共 有有 种分法。种分法。平均分成的组平均分成的组,不管它们的顺序如何不管它们的顺序如何,都是一都是一种情况种情况,所以分组后要一定要除以所以分组后要一定要除以 (n为均为均分的组数分的组数)避免重复计数。避免重复计数。回目录回目录1 将将13个球队分成个球队分成3组组,一组一组5个队个队,其它两组其它两组4 个队个队, 有多少分法?有多少分法?2.10名学生分成名学生分成3组组,其中一组其中一组4人人, 另两组另两组3人人 但正副班长不能分在同一组但正副班长不能分在同一组,有多少种不同有多少种不同 的分组方法的分组方法 (1540)3.3.某校高二年级共有六个班级,现从外地转某校高二年级共有六个班级,现从外地转 入入4 4名学生,要安排到该年级的两个班级且每名学生,要安排到该年级的两个班级且每班安排班安排2 2名,则不同的安排方案种数为名,则不同的安排方案种数为_ 回目录回目录分清排列、组合、等分的算法区别分清排列、组合、等分的算法区别例例 (1)(1)今有今有1010件不同奖品件不同奖品, ,从中选从中选6 6件分给甲一件分给甲一件件, ,乙二件和丙三件乙二件和丙三件, ,有多少种分法有多少种分法? ? (2) (2) 今有今有1010件不同奖品件不同奖品, , 从中选从中选6 6件分给三人件分给三人, ,其中其中1 1人一件人一件1 1人二件人二件1 1人三件人三件, , 有多少种分法有多少种分法? ?(3) (3) 今有今有1010件不同奖品件不同奖品, , 从中选从中选6 6件分成三份件分成三份, ,每每份份2 2件件, , 有多少种分法有多少种分法? ? 解:(1) (2)(3)回目录回目录练习练习 (1)(1)今有今有1010件不同奖品件不同奖品, ,从中选从中选6 6件分成三份件分成三份, , 二二份各份各1 1件件, ,另一份另一份4 4件件, , 有多少种分法有多少种分法? ?(2) (2) 今有今有1010件不同奖品件不同奖品, ,从中选从中选6 6件分给甲乙丙三件分给甲乙丙三人人, ,每人二件有多少种分法每人二件有多少种分法? ?解: (1)(2)回目录回目录小结:小结:排列与组合的区别在于元素是排列与组合的区别在于元素是否有序否有序; m; m等分的组合问题是非等分情等分的组合问题是非等分情况的况的; ;而元素相同时又要另行考虑而元素相同时又要另行考虑. .回目录回目录八八. .排列组合混合问题先选后排策略排列组合混合问题先选后排策略例例. .有有5 5个不同的小球个不同的小球, ,装入装入4 4个不同的盒内个不同的盒内, , 每盒至少装一个球每盒至少装一个球, ,共有多少不同的装共有多少不同的装 法法. .解解: :第一步从第一步从5 5个球中选出个球中选出2 2个组成复合元共个组成复合元共 有有_种方法种方法. .再把再把5 5个元素个元素( (包含一个复合包含一个复合 元素元素) )装入装入4 4个不同的盒内有个不同的盒内有_种方法种方法. .根据分步计数原理装球的方法共有根据分步计数原理装球的方法共有_解决排列组合混合问题解决排列组合混合问题,先选后排是最基本先选后排是最基本的指导思想的指导思想.此法与此法与相邻元素捆绑策略相似吗?回目录回目录练习题一个班有一个班有6 6名战士名战士, ,其中正副班长各其中正副班长各1 1人人现从中选现从中选4 4人完成四种不同的任务人完成四种不同的任务, ,每人每人完成一种任务完成一种任务, ,且正副班长有且只有且正副班长有且只有1 1人人参加参加, ,则不同的选法有则不同的选法有_ _ 种种192192回目录回目录3 名医生和名医生和 6 名护士被分配到名护士被分配到 3 所所学校为学生体检学校为学生体检,每校分配每校分配 1 名医生名医生和和 2 名护士名护士,不同的分配方法共有多不同的分配方法共有多少种少种?先选后排问题的处理方法先选后排问题的处理方法 解法一:先组队后分校(先解法一:先组队后分校(先分堆后分配)分堆后分配)回目录回目录 解法二:依次确定到第一、解法二:依次确定到第一、第二、第三所学校去的医生和第二、第三所学校去的医生和护士护士.回目录回目录练习练习 某学习小组有某学习小组有5 5个男生个男生3 3个女生,从中个女生,从中选选3 3名男生和名男生和1 1名女生参加三项竞赛活动,每名女生参加三项竞赛活动,每项活动至少有项活动至少有1 1人参加,则有不同参赛方法人参加,则有不同参赛方法_种种. .解:采用先组后排方法解:采用先组后排方法: :小结:小结:本题涉及一类重要问题:问本题涉及一类重要问题:问题中既有元素的限制,又有排列的题中既有元素的限制,又有排列的问题,一般是先元素(即组合)后问题,一般是先元素(即组合)后排列。排列。回目录回目录解决排列组合综合性问题的一般过程如下解决排列组合综合性问题的一般过程如下:1.1.认真审题弄清要做什么事认真审题弄清要做什么事2.2.怎样做才能完成所要做的事怎样做才能完成所要做的事, ,即采取分步还即采取分步还 是分类是分类, ,或是分步与分类同时进行或是分步与分类同时进行, ,确定分多确定分多 少步及多少类。少步及多少类。3.3.确定每一步或每一类是排列问题确定每一步或每一类是排列问题( (有序有序) )还是还是 组合组合( (无序无序) )问题问题, ,元素总数是多少及取出多元素总数是多少及取出多 少个元素少个元素. .解决排列组合综合性问题,往往类与步交解决排列组合综合性问题,往往类与步交 叉,因此必须掌握一些常用的解题策略叉,因此必须掌握一些常用的解题策略一一. .特殊元素优先法和特殊位置优限法特殊元素优先法和特殊位置优限法例例1.由由0,1,2,3,4,5可以组成多少个没有重复数字可以组成多少个没有重复数字 五位奇数五位奇数. 解解:由于末位和首位有特殊要求由于末位和首位有特殊要求,应该优先安应该优先安 排排,以免不合要求的元素占了这两个位置以免不合要求的元素占了这两个位置先排末位共有先排末位共有_ 然后排首位共有然后排首位共有_最后排其它位置共有最后排其它位置共有_由分步计数原理得由分步计数原理得=288特殊位置优限法和特殊元素优先法是解决排特殊位置优限法和特殊元素优先法是解决排列组合问题最常用也是最基本的方法列组合问题最常用也是最基本的方法, ,若以元若以元素分析为主素分析为主, ,需先安排特殊元素需先安排特殊元素, ,再处理其它再处理其它元素元素. .若以位置分析为主若以位置分析为主, ,需先满足特殊位置需先满足特殊位置的要求的要求, ,再处理其它位置。若有多个约束条件,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其往往是考虑一个约束条件的同时还要兼顾其它条件。它条件。1.1.7 7种不同的花种在排成一列的花盆里种不同的花种在排成一列的花盆里, ,若两若两种葵花不种在中间,也不种在两端的花盆种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?里,问有多少不同的种法?练习题二.相邻问题捆绑法:例例2. 72. 7人站成一排人站成一排 , ,其中甲乙相邻且丙丁相其中甲乙相邻且丙丁相 邻邻, , 共有多少种不同的排法共有多少种不同的排法. .甲甲乙乙丙丙丁丁由分步计数原理可得共有由分步计数原理可得共有种不同的排法种不同的排法=480解:可先将甲乙两元素捆绑成整体并看成解:可先将甲乙两元素捆绑成整体并看成 一个复合元素,同时丙丁也看成一个一个复合元素,同时丙丁也看成一个 复合元素,再与其它元素进行排列,复合元素,再与其它元素进行排列, 同时对相邻元素内部进行自排。同时对相邻元素内部进行自排。 要求某几个元素必须排在一起的问题要求某几个元素必须排在一起的问题, ,可以用可以用捆绑法来解决问题捆绑法来解决问题. .即将需要相邻的元素捆绑即将需要相邻的元素捆绑为一个元素为一个元素, ,再与其它元素一起作排列再与其它元素一起作排列, ,同时同时要注意捆绑的元素内部要松绑。要注意捆绑的元素内部要松绑。某人射击某人射击8 8枪,命中枪,命中4 4枪,枪,4 4枪命中恰好枪命中恰好有有3 3枪连在一起的情形的不同种数为(枪连在一起的情形的不同种数为( )练习题20捆在一起的相同捆在一起的相同元素不需要松绑。元素不需要松绑。捆在一起的相同元素捆在一起的相同元素的个数若不同,便是的个数若不同,便是不同的元素了。不同的元素了。三三. .不相邻问题插空法不相邻问题插空法: :例例3 3. .一一个个晚晚会会的的节节目目有有4 4个个舞舞蹈蹈, ,2 2个个相相声声, ,3 3个个 独独唱唱, ,舞舞蹈蹈节节目目不不能能连连续续出出场场, ,则则节节目目的的出出 场场顺顺序序有有多多少少种种?解解: :分两步进行第一步排分两步进行第一步排2 2个相声和个相声和3 3个独唱共个独唱共 有有 种,种, 第二步将第二步将4 4舞蹈插入第一步排舞蹈插入第一步排好的好的6 6个元素中间包含首尾两个空位共有个元素中间包含首尾两个空位共有种种 不同的方法不同的方法 由分步计数原理,节目的不同顺序共有 种相相相相独独独独独独元素不相邻问题可先把没有位置要求的元素元素不相邻问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端的进行排队再把不相邻元素插入中间和两端的“空空”中。中。某班新年联欢会原定的某班新年联欢会原定的5 5个节目已排成节个节目已排成节目单,开演前又增加了两个新节目目单,开演前又增加了两个新节目. .如果如果将这两个新节目插入原节目单中,且两将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数个新节目不相邻,那么不同插法的种数为(为( )30练习题有有6个座位连成一排,安排个座位连成一排,安排3人就座,恰人就座,恰有两个空位相邻的不同坐法有(有两个空位相邻的不同坐法有( )种?)种?7272四四. .部分元素定序问题倍缩法部分元素定序问题倍缩法: :例例4.74.7人排队人排队, ,其中甲乙丙其中甲乙丙3 3人顺序一定共有多人顺序一定共有多 少不同的排法少不同的排法解:( (倍缩法倍缩法) )对于某几个元素顺序一定的排列对于某几个元素顺序一定的排列问题问题, ,可先把这几个元素与其他元素一起可先把这几个元素与其他元素一起进行排列进行排列, ,然后用总排列数除以然后用总排列数除以这几个元这几个元素之间的全排列数素之间的全排列数, ,则共有不同排法种数则共有不同排法种数是:是: (空位法空位法)设想有)设想有7 7把椅子让除甲乙丙以外把椅子让除甲乙丙以外的四人就坐共有的四人就坐共有 种方法,其余的三个种方法,其余的三个位置甲乙丙共有位置甲乙丙共有 种坐法,则共有种坐法,则共有 种种 方法方法 1(插空法插空法) )先排甲乙丙三个人先排甲乙丙三个人, ,共有共有1 1种排法种排法, ,再再 把其余把其余4 4四人四人依次依次插入共有插入共有 方法方法4*5*6*74*5*6*7定序问题可以用倍缩法,还可转化为占位插定序问题可以用倍缩法,还可转化为占位插空模型处理空模型处理练习题1010人身高各不相等人身高各不相等, ,排成前后排,每排排成前后排,每排5 5人人, ,要要求从左至右身高逐渐增加,共有多少排法?求从左至右身高逐渐增加,共有多少排法?五五. .重复排列问题求幂法重复排列问题求幂法: :例例5.5.把把6 6名实习生分配到名实习生分配到7 7个车间实习个车间实习, ,共有共有 多少种不同的分法多少种不同的分法解解: :完成此事共分六步完成此事共分六步: :把第一名实习生分配把第一名实习生分配 到车间有到车间有 种分法种分法. .7 7把第二名实习生分配把第二名实习生分配 到车间也有到车间也有7 7种分法,种分法,依此类推依此类推, ,由分步计由分步计数原理共有数原理共有 种不同的排法种不同的排法允许重复的排列问题的特点是以元素为研究允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地各个元素的位置,一般地n个不同的元素没个不同的元素没有限制地安排在有限制地安排在m个位置上的排列数为个位置上的排列数为 种种n nm m 某某8 8层大楼一楼电梯上来层大楼一楼电梯上来8 8名乘客人名乘客人, ,他们他们 到各自的一层下电梯到各自的一层下电梯, ,下电梯的方法下电梯的方法( )练习题六六. .环排问题线排法环排问题线排法例例6. 56. 5人围桌而坐人围桌而坐, ,共有多少种坐法共有多少种坐法? ? 解:解:围桌而坐与围桌而坐与坐成一排的不同点在于,坐成坐成一排的不同点在于,坐成 圆形没有首尾之分,所以固定一人圆形没有首尾之分,所以固定一人A A并从并从 此位置把圆形展成直线其余此位置把圆形展成直线其余4 4人共有人共有_ 种排法即种排法即 A AB BC CE ED DD DA AA AB BC CE E(5-1)5-1)!一般地一般地,n,n个不同元素作圆形排个不同元素作圆形排列列, ,共有共有(n-1)!(n-1)!种排法种排法. .如果从如果从n n个不同元素中取出个不同元素中取出m m个元素作个元素作圆形排列共有圆形排列共有练习题6颗颜色不同的钻石,可穿成几种钻石圈60七七. .分排问题直排法分排问题直排法: :例例7.87.8人排成前后两排人排成前后两排, ,每排每排4 4人人, ,其中甲乙在其中甲乙在 前排前排, ,丁在后排丁在后排, ,共有多少排法共有多少排法解解:8人排前后两排人排前后两排,相当于相当于8人坐人坐8把椅子把椅子,可以可以 把椅子排成一排把椅子排成一排. 先在前先在前4个位置排甲乙两个位置排甲乙两个特殊元素有个特殊元素有_种种,再排后再排后4个位置上的个位置上的特殊元素有特殊元素有_种种,其余的其余的5人在人在5个位置个位置上任意排列有上任意排列有_种种,则共有则共有_种种.前排后排后排一般地一般地,元素分成多排的排列问题元素分成多排的排列问题,可归结为一排考虑可归结为一排考虑,再分段研究再分段研究.有两排座位,前排有两排座位,前排1111个座位,后排个座位,后排1212个座位,现安排个座位,现安排2 2人就座规定前排人就座规定前排中间的中间的3 3个座位不能坐,并且这个座位不能坐,并且这2 2人人不左右相邻,那么不同排法的种数不左右相邻,那么不同排法的种数是是_346练习题八八. .排列组合混合问题排列组合混合问题先分类再分步先分类再分步, ,先组合后排列先组合后排列: :例例8.8.有有5 5个不同的小球个不同的小球, ,装入装入4 4个不同的盒内个不同的盒内, ,每盒至少装一个球每盒至少装一个球, ,共有多少不同的装法共有多少不同的装法. .解解: :第一步从第一步从5 5个球中选出个球中选出2 2个组成复合元共个组成复合元共 有有_种方法种方法. .再把再把5 5个元素个元素( (包含一个复合包含一个复合 元素元素) )装入装入4 4个不同的盒内有个不同的盒内有_种方法种方法. .根据分步计数原理装球的方法共有根据分步计数原理装球的方法共有_解决排列组合混合问题解决排列组合混合问题,先选后排是最基本的先选后排是最基本的指导思想指导思想.练习题一个班有一个班有6 6名战士名战士, ,其中正副班长各其中正副班长各1 1人人现从中选现从中选4 4人完成四种不同的任务人完成四种不同的任务, ,每人每人完成一种任务完成一种任务, ,且正副班长有且只有且正副班长有且只有1 1人人参加参加, ,则不同的选法有则不同的选法有_ _ 种种192192在一条南北方向的步行街同侧有在一条南北方向的步行街同侧有8 8块广告牌块广告牌, ,广告牌的底色可选用红、蓝两种颜色,若只广告牌的底色可选用红、蓝两种颜色,若只要求相邻两块牌的底色不都为红色,则不同要求相邻两块牌的底色不都为红色,则不同的配色方案共有(的配色方案共有( )种)种55九九. .小集团问题先整体后局部小集团问题先整体后局部例例9.9.用用1,2,3,4,51,2,3,4,5组成没有重复数字的五位数组成没有重复数字的五位数 其中恰有两个偶数夹其中恰有两个偶数夹1,1,在两个奇数之在两个奇数之 间间, ,这样的五位数有多少个?这样的五位数有多少个?解:把解:把,当作一个小集团与排队当作一个小集团与排队共有共有_种排法,再排小集团内部共有种排法,再排小集团内部共有_种排法,由分步计数原理共有种排法,由分步计数原理共有_种排法种排法.31524小集团小集团小集团排列问题中,先整体后局小集团排列问题中,先整体后局部,再结合其它策略进行处理。部,再结合其它策略进行处理。.计划展出计划展出10幅不同的画幅不同的画,其中其中1幅水彩画幅水彩画,幅油画幅油画,幅国画幅国画, 排成一行陈列排成一行陈列,要求同一要求同一品种的必须连在一起,并且水彩画不在两品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为端,那么共有陈列方式的种数为_2. 5男生和女生站成一排照像男生和女生站成一排照像,男生相邻男生相邻,女女生也相邻的排法有生也相邻的排法有_种种十十. .相同元素分堆问题隔板法相同元素分堆问题隔板法: :例例10.有有1010个运动员名额,在分给个运动员名额,在分给7 7个班,每个班,每班至少一个班至少一个, ,有多少种分配方案?有多少种分配方案? 解:因为解:因为10个名额没有差别,把它们排成个名额没有差别,把它们排成一排。相邻名额之间形成个空隙。一排。相邻名额之间形成个空隙。在个空档中选个位置插个隔板,在个空档中选个位置插个隔板,可把名额分成份,对应地分给个可把名额分成份,对应地分给个班级,每一种插板方法对应一种分法班级,每一种插板方法对应一种分法共有共有_种分法。种分法。一班二班三班四班五班六班七班将将n n个相同的元素分成个相同的元素分成m m份(份(n n,m m为正整数)为正整数), ,每份至少一个元素每份至少一个元素, ,可以用可以用m-1m-1块隔板,插入块隔板,插入n n个元素排成一排的个元素排成一排的n-1n-1个空隙中,所有分法数个空隙中,所有分法数为为练习题1.1.1010个相同的球装个相同的球装5 5个盒中个盒中, ,每盒至少一每盒至少一 有多少装法?有多少装法?2 .2 .不定方程不定方程x+y+z+w=7x+y+z+w=7的正整数解的个的正整数解的个数是多少个数是多少个? ?十一十一. .正难则反淘汰法正难则反淘汰法: :例例11.从从0,1,2,3,4,5,6,7,8,9这十个数字中取出三这十个数字中取出三 个数,使其和为不小于个数,使其和为不小于10的偶数的偶数,不同的不同的 取法有多少种?取法有多少种?解:这问题中如果直接求不小于解:这问题中如果直接求不小于10的偶数很的偶数很 困难困难,可用总体淘汰法。可用总体淘汰法。 这十个数字中有这十个数字中有5 5个偶数个偶数5 5个奇数个奇数, ,所取的三个数含有所取的三个数含有3 3个偶个偶数的取法有数的取法有_,_,只含有只含有1 1个偶数的取法个偶数的取法有有_,_,和为偶数的取法共有和为偶数的取法共有_再淘汰和小于再淘汰和小于10的偶数共的偶数共_符合条件的取法共有符合条件的取法共有_ 9 9013013015015017017023023025025027027041041045045043043+- 9- 9+有些排列组合问题有些排列组合问题, ,正面直接考虑比较复杂正面直接考虑比较复杂, ,而它的反面往往比较简捷而它的反面往往比较简捷, ,可以先求出它的可以先求出它的反面反面, ,再从整体中淘汰再从整体中淘汰. .我们班里有我们班里有4343位同学位同学, ,从中任抽从中任抽5 5人人, ,正、正、副班长、团支部书记至少有一人在内的副班长、团支部书记至少有一人在内的抽法有多少种抽法有多少种? ?练习题十二十二. .平均分堆问题等额有序和等额无序法平均分堆问题等额有序和等额无序法: :例12. 6本不同的书平均分成本不同的书平均分成3堆堆,每堆每堆2本共有本共有 多少分法?多少分法?解解: 分三步取书得分三步取书得 种方法种方法,但这里出现但这里出现 重复计数的现象重复计数的现象,不妨记不妨记6本书为本书为ABCDEF 若第一步取若第一步取AB,第二步取第二步取CD,第三步取第三步取EF 该分法记为该分法记为(AB,CD,EF),则则 中还有中还有 (AB,EF,CD),(CD,AB,EF),(CD,EF,AB) (EF,CD,AB),(EF,AB,CD)共有共有 种取法种取法 ,而而 这些分法仅是这些分法仅是(AB,CD,EF)一种分法一种分法,故共故共 有有 种分法。种分法。平均分成的组平均分成的组,不管它们的顺序如何不管它们的顺序如何,都是一都是一种情况种情况,所以分组后要一定要除以所以分组后要一定要除以 (n为均为均分的组数分的组数)避免重复计数。避免重复计数。1 将将13个球队分成个球队分成3组组,一组一组5个队个队,其它两组其它两组4 个队个队, 有多少分法?有多少分法?2.10名学生分成名学生分成3组组,其中一组其中一组4人人, 另两组另两组3人人 但正副班长不能分在同一组但正副班长不能分在同一组,有多少种不同有多少种不同 的分组方法的分组方法 (1540)3.3.某校高二年级共有六个班级,现从外地转某校高二年级共有六个班级,现从外地转 入入4 4名学生,要安排到该年级的两个班级且每名学生,要安排到该年级的两个班级且每班安排班安排2 2名,则不同的安排方案种数为名,则不同的安排方案种数为_ 十三十三. . 公共元素问题韦恩图法公共元素问题韦恩图法: :例例13.13.在一次演唱会上共在一次演唱会上共1010名演员名演员, ,其中其中8 8人能人能 能唱歌能唱歌,5,5人会跳舞人会跳舞, ,现要演出一个现要演出一个2 2人人 唱歌唱歌2 2人伴舞的节目人伴舞的节目, ,有多少选派方法有多少选派方法? ?解:10演员中有演员中有5人只会唱歌,人只会唱歌,2人只会跳舞人只会跳舞 3人为全能演员。人为全能演员。以只会唱歌的以只会唱歌的5 5人是否人是否选上唱歌人员为标准进行研究选上唱歌人员为标准进行研究 只会唱只会唱的的5 5人中没有人选上唱歌人员共有人中没有人选上唱歌人员共有_种种, ,只会唱的只会唱的5 5人中只有人中只有1 1人选上唱歌人人选上唱歌人员员_种种, ,只会唱的只会唱的5 5人中只有人中只有2 2人人选上唱歌人员有选上唱歌人员有_种,由分类计数种,由分类计数原理共有原理共有_种。种。+ + +本题还有如下分类标准:本题还有如下分类标准:* *以以3 3个全能演员是否选上唱歌人员为标准个全能演员是否选上唱歌人员为标准* *以以3 3个全能演员是否选上跳舞人员为标准个全能演员是否选上跳舞人员为标准* *以只会跳舞的以只会跳舞的2 2人是否选上跳舞人员为标准人是否选上跳舞人员为标准都可以得到正确结果都可以得到正确结果解含有约束条件的排列组合问题,可按元素的性质进行分类,按事件发生的连续过程分步,做到标准明确。分步层次清楚,不重不漏,分类标准一旦确定要贯穿于解题过程的始终。1.1.从从4 4名男生和名男生和3 3名女生中选出名女生中选出4 4人参加某个座人参加某个座 谈会,若这谈会,若这4 4人中必须既有男生又有女生,则人中必须既有男生又有女生,则不同的选法共有不同的选法共有_ _ 3434 练习题2. 3 3成人成人2 2小孩乘船游玩小孩乘船游玩,1,1号船最多乘号船最多乘3 3人人, 2, 2 号船最多乘号船最多乘2 2人人,3,3号船只能乘号船只能乘1 1人人, ,他们任选他们任选 2 2只船或只船或3 3只船只船, ,但小孩不能单独乘一只船但小孩不能单独乘一只船, , 这这3 3人共有多少乘船方法人共有多少乘船方法. .2727十四十四. .构造模型策略构造模型策略例例14. 14. 马路上有编号为马路上有编号为1,2,3,4,5,6,7,8,91,2,3,4,5,6,7,8,9的的 九只路灯九只路灯, ,现要关掉其中的现要关掉其中的3 3盏盏, ,但不能关但不能关 掉相邻的掉相邻的2 2盏或盏或3 3盏盏, ,也不能关掉两端的也不能关掉两端的2 2 盏盏, ,求满足条件的关灯方法有多少种?求满足条件的关灯方法有多少种?解:把此问题当作一个排队模型在解:把此问题当作一个排队模型在6 6盏盏 亮灯的亮灯的5 5个空隙中插入个空隙中插入3 3个不亮的灯个不亮的灯 有有_ _ 种种一些不易理解的排列组合题如果能转化为非常熟悉的模型,如占位填空模型,排队模型,装盒模型等,可使问题直观解决练习题某排共有某排共有1010个座位,若个座位,若4 4人就坐,每人左右人就坐,每人左右两边都有空位,那么不同的坐法有多少种?两边都有空位,那么不同的坐法有多少种?120十五十五. .实际操作穷举策略实际操作穷举策略例例15.15.设有编号设有编号1,2,3,4,51,2,3,4,5的五个球和编号的五个球和编号1,21,2 3,4,5 3,4,5的五个盒子的五个盒子, ,现将现将5 5个球投入这五个球投入这五 个盒子内个盒子内, ,要求每个盒子放一个球,并且要求每个盒子放一个球,并且 恰好有两个球的编号与盒子的编号相同恰好有两个球的编号与盒子的编号相同,.,. 有多少投法有多少投法 解:从从5个球中取出个球中取出2个与盒子对号有个与盒子对号有_种种 还剩下还剩下3球球3盒序号不能对应,盒序号不能对应, 利用实际操作法,如果剩下操作法,如果剩下3,4,5号球号球, 3,4,5号盒号盒3号球装号球装4号盒时,则号盒时,则4,5号球有只有号球有只有1种种装法装法3 3号盒号盒4 4号盒号盒5 5号盒号盒345十五十五. .实际操作穷举策略实际操作穷举策略例例15.15.设有编号设有编号1,2,3,4,51,2,3,4,5的五个球和编号的五个球和编号1,21,2 3,4,5 3,4,5的五个盒子的五个盒子, ,现将现将5 5个球投入这五个球投入这五 个盒子内个盒子内, ,要求每个盒子放一个球,并且要求每个盒子放一个球,并且 恰好有两个球的编号与盒子的编号相同恰好有两个球的编号与盒子的编号相同,.,. 有多少投法有多少投法 解:从从5个球中取出个球中取出2个与盒子对号有个与盒子对号有_种种 还剩下还剩下3球球3盒序号不能对应,盒序号不能对应, 利用实际操作法,如果剩下操作法,如果剩下3,4,5号球号球, 3,4,5号盒号盒3号球装号球装4号盒时,则号盒时,则4,5号球有只有号球有只有1种种装法装法, 同理同理3号球装号球装5号盒时号盒时,4,5号球有也号球有也只有只有1种装法种装法,由分步计数原理有由分步计数原理有2 种种 对于条件比较复杂的排列组合问题,不易用对于条件比较复杂的排列组合问题,不易用公式进行运算,往往利用穷举法或画出树状公式进行运算,往往利用穷举法或画出树状图会收到意想不到的结果图会收到意想不到的结果练习题1.1. 同一寝室同一寝室4 4人人, ,每人写一张贺年卡集中起来每人写一张贺年卡集中起来, , 然后每人各拿一张别人的贺年卡,则四张然后每人各拿一张别人的贺年卡,则四张 贺年卡不同的分配方式有多少种?贺年卡不同的分配方式有多少种? (9)2.2.给图中区域涂色给图中区域涂色, ,要求相邻区要求相邻区 域不同色域不同色, ,现有现有4 4种可选颜色种可选颜色, ,则则 不同的着色方法有不同的着色方法有_种种213457272十六十六. 分解与合成策略分解与合成策略例例16. 3003016. 30030能被多少个不同的偶数整除能被多少个不同的偶数整除分析:先把分析:先把3003030030分解成质因数的乘积形式分解成质因数的乘积形式 30030=235 7 111330030=235 7 1113依题依题 意可知偶因数必先取意可知偶因数必先取2,2,再从其余再从其余5 5个个 因数中任取若干个组成乘积,所有因数中任取若干个组成乘积,所有 的偶因数为:的偶因数为:例17.正方体的8个顶点可连成多少对异面 直线解:我们先从8个顶点中任取4个顶点构成四 体共有体共_每个四面体有_对异面直线,正方体中的8个顶点可连成_对异面直线6 6658=174分分解解与与合合成成策策略略是是排排列列组组合合问问题题的的一一种种最最基基本本的的解解题题策策略略, ,把把一一个个复复杂杂问问题题分分解解成成几几个个小小问问题题逐逐一一解解决决, ,然然后后依依据据问问题题分分解解后后的的结结构构, ,用用分分类类计计数数原原理理和和分分步步计计数数原原理理将将问问题题合合成成, ,从从而而得得到到问问题题的的答答案案 , ,每每个个比比较较复复杂杂 的的 问问 题题 都都 要要 用用 到到 这这 种种 解解 题题 策策 略略十七十七.化归策略化归策略例例18. 2518. 25人排成人排成5555方队方队, ,现从中选现从中选3 3人人, ,要要 求求3 3人不在同一行也不在同一列人不在同一行也不在同一列, ,不同的不同的 选法有多少种?选法有多少种?解: 将这个问题退化成将这个问题退化成9 9人排成人排成3333方队方队, ,现现从中选从中选3 3人人, ,要求要求3 3人不在同一行也不在人不在同一行也不在同一列同一列, ,有多少选法有多少选法. .这样每行必有这样每行必有1 1人人从其中的一行中选取从其中的一行中选取1 1人后人后, ,把这人所在把这人所在的行列都划掉,的行列都划掉,从从5555方队中选取方队中选取3 3行行3 3列有列有_选法选法所以从所以从5555方队选不在同一行也不在同方队选不在同一行也不在同一列的一列的3 3人有人有_选法。选法。处理复杂的排列组合问题时可以把一个问题处理复杂的排列组合问题时可以把一个问题退化成一个简要的问题,通过解决这个简要退化成一个简要的问题,通过解决这个简要的问题的解决找到解题方法,从而进下一步的问题的解决找到解题方法,从而进下一步解决原来的问题解决原来的问题如此继续下去如此继续下去. .从从3333方队中选方队中选3 3人的方法人的方法有有_种。再从种。再从5555方队选出方队选出3333方队便可解决问题方队便可解决问题某城市的街区由某城市的街区由1212个全等的矩形区组成个全等的矩形区组成其中实线表示马路,从其中实线表示马路,从A A走到走到B B的最短路的最短路径有多少种?径有多少种?练习题B BA A设有编号为设有编号为1、2、3、4、5的五个球和编号为的五个球和编号为1、2、3、4、5的五个盒子,现将的五个盒子,现将5个球投放个球投放到这五个盒子内,要求每个盒内放一个球,到这五个盒子内,要求每个盒内放一个球,若球的编号恰好与盒子的编号均不同,则不若球的编号恰好与盒子的编号均不同,则不同的投放方法的种数为多少?同的投放方法的种数为多少?将将4个颜色互不相同的球全部放入编号为个颜色互不相同的球全部放入编号为1和和2的两个盒子里,使得放入每个盒子里的球的的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方个数不小于该盒子的编号,则不同的放球方法有多少种?法有多少种?我校邀请了我校邀请了6位同学的父母共位同学的父母共12人人,请这请这12名名家长中的家长中的4位介绍对子女的教育情况位介绍对子女的教育情况,如果这如果这4位中恰有一对是夫妻位中恰有一对是夫妻,那么不同的选择方法的那么不同的选择方法的种数是多少种数是多少?在在5双不同的手套中任取双不同的手套中任取4只只,则其中至少有两则其中至少有两只配成一副手套的取法有多少种只配成一副手套的取法有多少种?小结 本节课,我们对有关排列组合的几种常见的本节课,我们对有关排列组合的几种常见的解题策略加以复习巩固。排列组合历来是学解题策略加以复习巩固。排列组合历来是学习中的难点,通过我们平时做的练习题,不习中的难点,通过我们平时做的练习题,不难发现排列组合题的特点是条件隐晦,不易难发现排列组合题的特点是条件隐晦,不易挖掘,题目多变,解法独特,数字庞大,难挖掘,题目多变,解法独特,数字庞大,难以验证。同学们只有对基本的解题策略熟练以验证。同学们只有对基本的解题策略熟练掌握。根据它们的条件掌握。根据它们的条件, ,我们就可以选取不同我们就可以选取不同的技巧来解决问题的技巧来解决问题. .对于一些比较复杂的问题对于一些比较复杂的问题, ,我们可以将几种策略结合起来应用把复杂的我们可以将几种策略结合起来应用把复杂的问题简单化,举一反三,触类旁通,进而为问题简单化,举一反三,触类旁通,进而为后续学习打下坚实的基础。后续学习打下坚实的基础。
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号