资源预览内容
第1页 / 共7页
第2页 / 共7页
第3页 / 共7页
第4页 / 共7页
第5页 / 共7页
第6页 / 共7页
第7页 / 共7页
亲,该文档总共7页全部预览完了,如果喜欢就下载吧!
资源描述
课时跟踪检测(五十七) 用样本估计总体一抓基础,多练小题做到眼疾手快1在频率分布直方图中,所有小长方形的面积的和等于_解析:在频率分布直方图中,每个小长方形的面积是组距频率,所以所有小长方形的面积的和等于1.答案:12如图是某学校举行的运动会上七位评委为某体操项目打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为_.解析:依题意,所剩数据的平均数是80(4367)85,所剩数据的方差是3(8485)2(8685)2(8785)21.6.答案:85,1.63(2015江苏高考)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为_解析:6.答案:64某公司300名员工2015年年薪情况的频率分布直方图如图所示,由图可知,员工中年薪在1.41.6万元的共有_人解析:由频率分布直方图知年薪低于1.4万元或者高于1.6万元的频率为(0.20.80.81.01.0)0.20.76,因此,年薪在1.4到1.6万元间的频率为10.760.24,所以300名员工中年薪在1.4到1.6万元间的员工人数为3000.2472(人)答案:725(2016盐城一模)若一组样本数据2,3,7,8,a的平均数为5,则该组数据的方差s2_.解析:由5得a5.故s2(25)2(35)2(75)2(85)2(55)2.答案:二保高考,全练题型做到高考达标1.(2015武汉调研)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x表示,则7个剩余分数的方差为_解析:由题图可知去掉的两个数是87,99,所以879029129490x917,解得x4.所以s2(8791)2(9091)22(9191)22(9491)22.答案:2(2016陕西一检)某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:40,50),50,60),60,70),70,80),80,90),90,100,则图中x的值等于_解析:依题意,0.0541010x0.01100.0061031,解得 x0.018.答案:0.0183.(2016南通调研)为了了解某校教师使用多媒体进行教学的情况,采用简单随机抽样的方法,从该校400名授课教师中抽取20名,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示,如图所示据此可估计上学期该校400名教师中,使用多媒体进行教学的次数在16,30)内的人数为_解析:由茎叶图可知,在20名教师中,上学期使用多媒体进行教学的次数在16,30)内的人数为8,据此可以估计400名教师中,使用多媒体进行教学的次数在16,30)内的人数为400160.答案:1604样本中共有五个个体,其值分别为0,1,2,3,m.若该样本的平均值为1,则其方差为_解析:依题意得m51(0123)1,样本方差s2(1202122222)2,即所求的样本方差为2.答案:25如图是某样本的频率分布直方图,由图中数据可以估计平均数是_解析:平均数等于各组中值与对应频率之积的和,故平均数的估计值为7.50.04512.50.10517.5(10.0450.105)13.答案:136某一段公路限速60公里/小时,现抽取200辆通过这一段公路的汽车的时速,其频率分布直方图如图所示,则这200辆汽车中在该路段超速的有_辆解析:由频率分布直方图可得超速的频率为0.04100.02100.6,所以该路段超速的有2000.6120辆 答案:1207.(2016郑州质检)已知甲、乙两组数据如茎叶图所示,若它们的中位数相同,平均数也相同,则图中的m,n的比值_.解析:由茎叶图可知甲的数据为27,30m,39,乙的数据为20n,32,34,38.由此可知乙的中位数是33,所以甲的中位数也是33,所以m3.由此可以得出甲的平均数为33,所以乙的平均数也是33,所以有33,所以n8,所以.答案:8某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:学生1号2号3号4号5号甲班67787乙班67679若以上两组数据的方差中较小的一个为s2,则s2_.解析:由数据表可得出乙班的数据波动性较大,则其方差较大,甲班的数据波动性较小,其方差较小,其平均值为7,方差s2(10010).答案:9某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数的统计数据的茎叶图如图所示,已知两组技工在单位时间内加工的合格零件的平均数都为10.(1)求出m,n的值;(2)求出甲、乙两组技工在单位时间内加工的合格零件的方差s和s,并由此分析两组技工的加工水平;(3)质检部门从该车间甲、乙两组技工中各随机抽取一名,对其加工的零件进行检测,若两人加工的合格零件个数之和大于17,则称该车间“质量合格”,求该车间“质量合格”的概率解:(1)根据题意可知:甲(78101210m)10,乙(9n101112)10,m3,n8.(2)s(710)2(810)2(1010)2(1210)2(1310)25.2,s(810)2(910)2(1010)2(1110)2(1210)22,甲乙,ss,甲、乙两组的整体水平相当,乙组更稳定一些(3)质检部门从该车间甲、乙两组技工中各随机抽取一名,对其加工的零件进行检测,设两人加工的合格零件数分别为a,b,则所有(a,b)有(7,8),(7,9),(7,10),(7,11),(7,12),(8,8),(8,9),(8,10),(8,11),(8,12),(10,8),(10,9),(10,10),(10,11),(10,12),(12,8),(12,9),(12,10),(12,11),(12,12),(13,8),(13,9),(13,10),(13,11),(13,12),共计25个,而ab17的基本事件有(7,8),(7,9),(7,10),(8,8),(8,9),共计5个,故满足ab17的基本事件共有25520(个),故该车间“质量合格”的概率为.10(2016惠州调研)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:40,50),50,60),90,100后得到如图所示的频率分布直方图(1)求图中实数a的值;(2)若该校高一年级共有学生640名,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在40,50)与90,100两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率解:(1)因为图中所有小矩形的面积之和等于1,所以10(0.0050.010.02a0.0250.01)1,解得a0.03.(2)根据频率分布直方图,成绩不低于60分的频率为110(0.0050.01)0.85.由于该校高一年级共有学生640名,利用样本估计总体的思想,可估计该校高一年级期中考试数学成绩不低于60分的人数约为6400.85544.(3)成绩在40,50)分数段内的人数为400.052,成绩在90,100分数段内的人数为400.14,则记在40,50)分数段的两名同学为A1,A2,在90,100分数段内的同学为B1,B2,B3,B4.若从这6名学生中随机抽取2人,则总的取法共有15种如果2名学生的数学成绩都在40,50)分数段内或都在90,100分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10;如果一个成绩在40,50)分数段内,另一个成绩在90,100分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.则所取2名学生的数学成绩之差的绝对值不大于10的取法有(A1,A2),(B1,B2),(B1,B3),(B1,B4),(B2,B3),(B2,B4),(B3,B4)共7种取法,所以所求概率为P.三上台阶,自主选做志在冲刺名校1已知x是1,2,2,3,x,6,7,7,8这9个数的中位数,当x2取得最大值时,1,2,2,3,x,6,7,7,8这9个数的平均数为_解析:因为x是1,2,2,3,x,6,7,7,8这9个数的中位数,所以3x6.因为f(x)x2在3,6上为增函数,所以当x6时,x2取得最大值,此时1,2,2,3,x,6,7,7,8这9个数的平均数为(122366778).答案:2抽样统计甲、乙两个城市连续5天的空气质量指数(AQI),数据如下:城市空气质量指数(AQI)第1天第2天第3天第4天第5天甲109111132118110乙110111115132112则空气质量指数(AQI)较为稳定(方差较小)的城市为_(填“甲”或“乙”)解析:因为甲乙116,所以s(109116)2(111116)2(132116)2(118116)2(110116)274,s(110116)2(111116)2(115116)2(132116)2(112116)266.8.所以ss.答案:乙3某市约有20万住户,为了节约能源,拟出台“阶梯电价”制度,即制定住户月用电量的临界值a,若某住户某月用电量不超过a度,则按平价(即原价)0.5(单位:元/度)计费;若某月用电量超过a度,则超出部分按议价b(单位:元/度)计费,未超出部分按平价计费为确定a的值,随机调查了该市100户的月用电量,统计分析后得到如图所示的频率分布直方图根据频率分布直方图解答以下问题(同一组数据用该区间的中点值作代表)(1)若该市计划让全市70%的住户在“阶梯电价”出台前后缴纳的电费不变,求临界值a;(2)在(1)的条件下,假定出台“阶梯电价”之后,月用电量未达a度的住户用电量保持不变,月用电量超过a度的住户节省“超出部分”的60%,试估计全市每月节约的电量;(3)在(1)(2)条件下,若出台“阶梯电价”前后全市缴纳电费总额不变,求议价b.解:(1)由频率分布直方图,可算得各组数据对应的频率及频数如下表:分组0,20)20,40)40,60)60,80)80,100)100,120频率0.040.120.240.300.250.05频数4122430255由表可知,在区间0,80)内的频率总和恰为0
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号