资源预览内容
第1页 / 共31页
第2页 / 共31页
第3页 / 共31页
第4页 / 共31页
第5页 / 共31页
第6页 / 共31页
第7页 / 共31页
第8页 / 共31页
第9页 / 共31页
第10页 / 共31页
亲,该文档总共31页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
10.1 灰色预测理论10.2 GM(1,1)模型 10.3 GM(1,1)残差模型及GM (n, h)模型 10 灰色预测法灰色预测法回总目录1;.10.1 灰灰 色色 预预 测测 理理 论论 一、灰色预测的概念 (1)灰色系统、白色系统和黑色系统 白色系统是指一个系统的内部特征是完全 已知的,即系统的信息是完全充分的。回总目录回本章目录2;. 黑色系统是指一个系统的内部信息对外界 来说是一无所知的,只能通过它与外界的 联系来加以观测研究。 灰色系统内的一部分信息是已知的,另一 部分信息是未知 的,系统内各因素间有不 确定的关系。回总目录回本章目录3;. 灰色预测法是一种对含有不确定因素的系 统进行预测的方法。 灰色预测是对既含有已知信息又含有不确定 信息的系统进行预则,就是对在一定范围内 变化的、与时间有关的灰色过程进行预测。 (2)灰色预测法回总目录回本章目录4;. 灰色预测通过鉴别系统因素之间发展趋 势的相异程度,即进行关联分析,并对 原始数据进行生成处理来寻找系统变动 的规律,生成有较强规律性的数据序列, 然后建立相应的微分方程模型,从而预 测事物未来发展趋势的状况。回总目录回本章目录5;. 灰色预测法用等时距观测到的反映预测对 象特征的一系列数量值构造灰色预测模型, 预测未来某一时刻的特征量,或达到某一 特征量的时间。回总目录回本章目录6;. (3)灰色预测的四种常见类型 灰色时间序列预测 即用观察到的反映预测对象特征的时间序列来构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。 畸变预测 即通过灰色模型预测异常值出现的时刻,预测异常值 什么时候出现在特定时区内。 回总目录回本章目录7;. 系统预测 通过对系统行为特征指标建立一组相互关联的灰色预测模型,预测系统中众多变量间的相互协调关系的变化。 拓扑预测 将原始数据做曲线,在曲线上按定值寻找该定值发生的所有时点,并以该定值为框架构成时点数列,然后建立模型预测该定值所发生的时点。回总目录回本章目录8;. 二、生成列 为了弱化原始时间序列的随机性,在建立灰色预测模型之前,需先对原始时间序列进行数据处理,经过数据处理后的时间序列即称为生成列。回总目录回本章目录9;.累加累加是将原始序列通过累加得到生成列。 灰色系统常用的数据处理方式有累加和累减两种。 (1)数据处理方式回总目录回本章目录10;. 累加的规则: 将原始序列的第一个数据作为生成列的第一个数据,将原始序列的第二个数据加到原始序列的第一个数据上,其和作为生成列的第二个数据,将原始序列的第三个数据加到生成列的第二个数据上,其和作为生成列的第三个数据,按此规则进行下去,便可得到生成列。回总目录回本章目录11;.记原始时间序列为:生成列为:上标1表示一次累加,同理,可作m次累加:回总目录回本章目录12;. 对非负数据,累加次数越多则随机性弱化 越多,累加次数足够大后,可认为时间序 列已由随机序列变为非随机序列。 一般随机序列的多次累加序列,大多可用 指数曲线逼近。回总目录回本章目录13;.累减 将原始序列前后两个数据相减得到累减生成列 累减是累加的逆运算,累减可将累加生成 列 还原为非生成列,在建模中获得增量信息。一次累减的公式为:回总目录回本章目录14;.三、关联度 关联度分析是分析系统中各因素关联程度的方法,在计算关联度之前需先计算关联系数。(1)关联系数设则关联系数定义为:回总目录回本章目录15;.式中: 为第k个点 称为分辨率,00.950.800.700.70 C0.350.500.650.65 好 合格 勉强合格 不合格回总目录回本章目录29;.10.3 GM(1,1)残差模型及残差模型及GM (n, h)模型模型一、残差模型 若用原始经济时间序列模型检验不合格或精度不理想时,要对建立的GM(1,1)模型进行残差修正或提高模型的预测精度。修正的方法是建立GM(1,1)的残差模型。建立的GM(1,1)回总目录回本章目录30;. 二、 GM(n,h)模型 GM(n,h)模型是微分方程模型,可用于对描述对象做长期、连续、动态的反映。从原则上讲,某一灰色系统无论内部机制如何,只要能将该系统原始表征量表示为时间,并有(N表示自然数集),即可用GM模型对系统进行描述。,序列回总目录回本章目录31;.
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号