资源预览内容
第1页 / 共46页
第2页 / 共46页
第3页 / 共46页
第4页 / 共46页
第5页 / 共46页
第6页 / 共46页
第7页 / 共46页
第8页 / 共46页
第9页 / 共46页
第10页 / 共46页
亲,该文档总共46页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
高考高考二轮二轮数学(文科)数学(文科)专题八思想方法专题八思想方法第二讲数形结合思想第二讲数形结合思想 高考高考二轮二轮数学(文科)数学(文科)考点整合考点整合高考高考二轮二轮数学(文科)数学(文科)以数辅形与以形助数以数辅形与以形助数基础梳理基础梳理 数形结合的数学思想:包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质高考高考二轮二轮数学(文科)数学(文科)整合训练整合训练 1(1)(2009年全国卷文)函数ylog2 的图象() A关于原点对称B关于直线yx对称 C关于轴对称 D关于直线yx对称 (2)(2010年安徽卷)设 则a,b,c的大小关系是() Aacb Babc Ccab Dbca答案:答案:(1)A(2)A高考高考二轮二轮数学(文科)数学(文科)代数问题几何化与几何问题代数化代数问题几何化与几何问题代数化 数形结合思想的实质、关键及运用时应注意的问题:其实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参,合理用参,建立关系,由数思形,以形思数,做好数形转化;第三是正确定参数的取值范围基础梳理基础梳理高考高考二轮二轮数学(文科)数学(文科) 2(1)方程 的实数解的个数是() A2B3 C4 D以上均不对 (2)(2010年安徽卷)设abc0,二次函数f(x)ax2bxc的图象可能是()整合训练整合训练答案:答案:(1)B(2)D高考高考二轮二轮数学(文科)数学(文科)数形结合解决广泛的数学问题数形结合解决广泛的数学问题 基础梳理基础梳理 数形结合思想解决的相关问题 数形结合思想应用广泛,高考试题对数形结合的考查主要涉及: (1)考查集合及其运算问题(韦恩图与数轴) (2)考查用函数图象解决有关问题(如方程、不等式、函数的有关性质等) (3)考查运用向量解决有关问题 (4)考查三角函数的图象及其应用 (5)解析几何、立体几何中的数形结合高考高考二轮二轮数学(文科)数学(文科)整合训练整合训练 3(2010年浙江卷)已知x0是函数f(x)2x 的一个零点若x1(1,x0),x2(x0,),则() Af(x1)0,f(x2)0 Bf(x1)0,f(x2)0 Cf(x1)0,f(x2)0 Df(x1)0,f(x2)0答案:答案:B 高考高考二轮二轮数学(文科)数学(文科)高分突破高分突破高考高考二轮二轮数学(文科)数学(文科)用数形结合思想解决方程、不等式用数形结合思想解决方程、不等式及函数的有关性质问题及函数的有关性质问题 (1)已知:函数f(x)满足下面关系:f(x1)f(x1);当x1,1时,f(x)x2,则方程f(x)lg x解的个数是()A5B7C9D10 (2)设有函数f(x)a 和g(x) x1,已知x4,0时恒有f(x)g(x),求实数a的范围高考高考二轮二轮数学(文科)数学(文科) 思路点拨:思路点拨:(1)在同一坐标系中画出yf(x)和ylg x的图象,由它们交点个数判断方程的解的个数; (2)先将不等式f(x)g(x)转化为 然后在同一坐标系中分别作出函数y 和y x1a的图象,移动y x1a的图象使其满足条件,数形结合得要满足的数量关系 解析:解析:(1)由题意可知,f(x)是以2为周期,值域为0,1的函数又f(x)lg x,则x(0,10),画出两函数图象,则交点个数即为解的个数由图象可知共9个交点高考高考二轮二轮数学(文科)数学(文科)高考高考二轮二轮数学(文科)数学(文科)令y y x1a变形得(x2)2y24(y0),即表示以(2,0)为圆心,2为半径的圆的上半圆;表示斜率为 ,纵截距为1a的平行直线系设与圆相切的直线为AT则有解得a5或a (舍去)要使f(x)g(x)在x4,0时恒成立,则所表示的直线应在直线AT的上方或与它重合,故有a5,a5.高考高考二轮二轮数学(文科)数学(文科)跟踪训练跟踪训练 1已知定义在R R上的奇函数f(x),满足f(x4)f(x),且在区间0,2上是增函数,若方程f(x)m(m0)在区间8,8上有四个不同的根x1,x2,x3,x4,则x1x2x3x4_.高考高考二轮二轮数学(文科)数学(文科) 解析:因为定义在R R上的奇函数,满足f(x4)f(x),所以f(x4)f(x),由f(x)为奇函数,所以函数图象关于直线x2对称且f(0)0,由f(x4)f(x)知f(x8)f(x),所以函数是以8为周期的周期函数,又因为f(x)在区间0,2上是增函数,所以f(x)在区间2,0上也是增函数如图所示,那么方程f(x)m(m0)在区间8,8上有四个不同的根x1,x2,x3,x4,不妨设x1x2x3x4由对称性知x1x212,x3x44所以x1x2x3x41248.高考高考二轮二轮数学(文科)数学(文科)用数形结合解决参数、代数用数形结合解决参数、代数式的最值、取值范围问题式的最值、取值范围问题 (1)已知x,y满足条件 1,求y3x的最大值与最小值 (2)已知实数x、y满足不等式组 ,求函数z 的值域 思路点拨:思路点拨:(1)此题令by3x,即y3xb,视b为直线y3xb的截距,而直线与椭圆必有公共点,故相切时,b有最值 (2)此题可转化成过点(1,3)与不等式组表示区域的点的连线的斜率的范围高考高考二轮二轮数学(文科)数学(文科) 解析:解析:(1)令y3xb,则y3xb,原问题转化为在椭圆 上找一点,使过该点的直线斜率为3,且在y轴上有最大截距或最小截距 由图可知,当直线y3xb与椭圆 相切时,有最大或最小的截距 将y3xb代入 ,高考高考二轮二轮数学(文科)数学(文科) 得169x296bx16b24000, 令0,解得b13. 故y3x的最大值为13,最小值为13. (2)由解析几何知识可知,所给的不等式组表示圆x2y24的右半圆域(含边界),高考高考二轮二轮数学(文科)数学(文科) z 可改写为y3z(x1), 把z看作参数,则此方程表示过定点P(1,3),斜率为z 的直线系 那么所求问题的几何意义是:求过半圆域x2y24(x0)内或边界上任一点与过点P(1,3)的直线斜率的最大、最小值 由图显见,过点P和点A(0,2)的直线斜率最大,zmax 5. 过点P向半圆作切线,切线的斜率最小 设切点为B(a,b),则过B点的切线方程为axby4.又B在半圆周上,P在切线上,则有 高考高考二轮二轮数学(文科)数学(文科)高考高考二轮二轮数学(文科)数学(文科)跟踪训练跟踪训练2若例题(2)中条件不变,求5x4y的最大值与最小值 解析:解析:令5x4yb. 原问题转化为:在椭圆 1上求一点,使过该点的直线5x4yb与之相切即可 由 50x210bxb24000. 由0,得b ,故5x4y的最大值为 , 最小值为 .高考高考二轮二轮数学(文科)数学(文科)祝祝您高考高考二轮二轮数学(文科)数学(文科)专题八思想方法第三讲分类讨论思想 高考高考二轮二轮数学(文科)数学(文科)考点整合高考高考二轮二轮数学(文科)数学(文科)分类讨论解决的主要问题 基础梳理 分类讨论的思想是将一个较复杂的数学问题分解(或分割)成若干个基础性问题,通过对基础性问题的解答来实现解决原问题的思想策略对问题实行分类与整合,分类标准等于增加一个已知条件,实现了有效增设,将大问题(或综合性问题)分解为小问题(或基础性问题),优化解题思路,降低问题难度高考高考二轮二轮数学(文科)数学(文科)整合训练 1设常数a0,椭圆x2a2a2y20的长轴长是短轴长的2倍,则a等于() A2或B2C.D. (2)函数y 的值域是_ 解析:(1)方程化为 y21,若焦点在x轴上,则有a2;若焦点在y轴上,则有2a1,a . 答案:(1)A(2)2,0,2高考高考二轮二轮数学(文科)数学(文科)分类讨论的多种类型基础梳理 1由数学概念引起的分类讨论:有的概念本身是分类的,如绝对值、直线斜率、指数函数、对数函数等 2由性质、定理、公式的限制引起的分类讨论:有的数学定理、公式、性质是分类给出的,在不同的条件下结论不一致,如等比数列的前n项和公式、函数的单调性等 3由数学运算要求引起的分类讨论:如除法运算中除数不为零,偶次方根为非负,对数真数与底数的要求,指数运算中底数的要求,不等式两边同乘以一个正数、负数,三角函数的定义域等高考高考二轮二轮数学(文科)数学(文科) 4由图形的不确定性引起的分类讨论:有的图形类型、位置需要分类:如角的终边所在的象限;点、线、面的位置关系等 5由参数的变化引起的分类讨论:某些含有参数的问题,如含参数的方程、不等式,由于参数的取值不同会导致所得结果不同,或对于不同的参数值要运用不同的求解或证明方法 6由实际意义引起的讨论:此类问题在应用题中,特别是在解决排列、组合中的计数问题时常用高考高考二轮二轮数学(文科)数学(文科)整合训练 2(1)已知正ABC的边长为3,到这个三角形的三个顶点距离都等于1的平面的个数是() A2 B3 C5 D8 (2)若loga 1,则a的取值范围是_ 解析:(1)对三个顶点和平面的位置分类:在平面同一侧有2个,在平面的两则有6个 共有268个 答案:(1)D(2) (1,)高考高考二轮二轮数学(文科)数学(文科)高分突破高考高考二轮二轮数学(文科)数学(文科)根据数学的概念分类讨论 设0x1,a0,且a1,比较|loga(1x)|与|loga(1x)|的大小 思路点拨:先利用0x1确定1x与1x的范围,再利用绝对值及对数函数的概念分类讨论两式差与0的大小关系,从而比较出大小 解析:0x1, 01x1,1x1,01x21. 当0a1时,loga(1x)0,loga(1x)0, 所以|loga(1x)|loga(1x)| loga(1x)loga(1x) loga(1x2)0;高考高考二轮二轮数学(文科)数学(文科)当a1时,loga(1x)0,loga(1x)0.所以|loga(1x)|loga(1x)|loga(1x)loga(1x)loga(1x2)0.由、可知,|loga(1x)|loga(1x)|.高考高考二轮二轮数学(文科)数学(文科)跟踪训练 1(2009年北京理)若函数f(x) 则不等式|f(x)| 的解集为_高考高考二轮二轮数学(文科)数学(文科)根据运算的要求或性质、定理、公式的条件分类讨论 在等差数列an中,a11,满足a2n2an,n1,2,(1)求数列an的通项公式;(2)记bn (p0),求数列bn的前n项和Tn. 思路点拨:(1)由a2n2an,n1,2,求出公差d,即得an的通项公式 (2)先求bn的通项公式,然后用错位相减可求Tn,但由于公比q不确定,故用等比数列前n项公式求Tn时要分类讨论 解析:(1)设等差数列an的公差为d, 由a2n2an得a22a12,所以da2a11. 又a2nanndann2an, 所以,ann.高考高考二轮二轮数学(文科)数学(文科)(2)由bn 得bnnpn,所以Tnp2p23p3(n1)pn1npn.当p1时,Tn .当p1时,pTnp22p3(n1)pnnpn1,(1p)Tnpp2p3pnnpn1,高考高考二轮二轮数学(文科)数学(文科)跟踪训练 2(2009年山东卷理)若函数f(x)axxa(a0且a1)有两个零点,则实数a的取值范围是_ 解析:设函数yax(a0,且a1)和函数yxa,则函数f(x)axxa(a0且a1)有两个零点,就是函数yax(a0,且a1与函数yxa有两个交点,由图象可知当0a1时两函数只有一个交点,不符合,当a1时,因为函数yax(a1)的图象过点(0,1),而直线yxa所过的点一定在点(0,1)的上方,所以一定有两个交点所以实数a的取值范围是a1. 答案:a1高考高考二轮二轮数学(文科)数学(文科)根据字母的取值情况分类讨论 已知函数f(x)x2eax,其中a0,e为自然对数的底数 (1)讨论函数f(x)的单调性; (2)求函数f(x)在区间0,1上的最大值 思路点拨:(1)先对f(x)求导,再由f(x)在不同区间上的符号可讨论f(x)的单调性 (2)f(x)在0,1上的最大值在0,1上的端点处或极值点处取得,需讨论f(x)0的零点是否是在该区间上 解析:(1)f(x)x(ax2)eax. 当a0时,令f(x)0,得x0. 若x0,则f(x)0,从而f(x)在(0,)上单调递增; 若x0,则f(x)0,从而f(x)在(,0)上单调递减高考高考二轮二轮数学(文科)数学(文科)当a0时,令f(x)0,得x(ax2)0,故x0或x .若x0,则f(x)0,从而f(x)在(,0)上单调递减;若0x ,则f(x)0,从而f(x)在 上单调递增;若x ,则f(x)0,从而f(x)在 上单调递减(2)当a0时,f(x)在区间0,1上的最大值是f(1)1.当2a0时,f(x)在区间0,1上的最大值是f(1)ea.当a2时,f(x)在区间0,1上的最大值是f .综上所述,当a0时,f(x)max1;当2a0时,f(x)maxea;当a2时,f(x)max .高考高考二轮二轮数学(文科)数学(文科)跟踪训练3数列an的通项ann2cos2 sin2 ,其前n项和为Sn. (1)求Sn;(2)bn ,求数列bn的前n项和Tn.高考高考二轮二轮数学(文科)数学(文科)高考高考二轮二轮数学(文科)数学(文科)高考高考二轮二轮数学(文科)数学(文科)根据图形位置或形状变动分类讨论 长方形ABCD中,|AB|4,|BC|8,在BC边上取一点P,使|BP|t,线段AP的垂直平分线与长方形的边的交点为Q、R时,用t表示|QR|. 思路点拨:建立平面直角坐标系,设法求出点Q、R的坐标,利用两点间的距离公式建模 解析:如图所示,高考高考二轮二轮数学(文科)数学(文科) 分别以BC、AB所在的边为x、y轴建立坐标系 kAP , kQR . 又AP的中点的坐标为 , QR所在的直线方程为y2 由于t的取值范围的不同会导致Q、R落在长方形ABCD的不同边上,故需分类讨论: 当|PD|AD|8时, 易知|PC| 4. 当0t8 时,Q、R两点分别在AB、CD上,对方程,分别令x0和x8,高考高考二轮二轮数学(文科)数学(文科) Q、R两点分别在AB、AD上,对方程分别令x0和y4,高考高考二轮二轮数学(文科)数学(文科)跟踪训练 4四面体的四个顶点到平面M的距离之比为1113,求满足条件的平面M的个数 解析:4个顶点都在M同侧,则有: 14个(平面); 距离比为3的顶点与其他3个顶点不同侧,则有: 14个(平面); 距离比为3的顶点与其他3个顶点中的1个同侧,则有: 112(平面); 距离比为3的顶点与其他3个顶点中的2个同侧,则有: 112(平面), 共有44121232个(平面)高考高考二轮二轮数学(文科)数学(文科)祝您
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号