资源预览内容
第1页 / 共34页
第2页 / 共34页
第3页 / 共34页
第4页 / 共34页
第5页 / 共34页
第6页 / 共34页
第7页 / 共34页
第8页 / 共34页
第9页 / 共34页
第10页 / 共34页
亲,该文档总共34页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
第二章 数字图像处理基础 2.1 图像文件格式图像文件格式 2.2 色度学基础色度学基础2.3 颜色模型颜色模型 2.1 图像文件格式图像文件格式 数字图像有多种存储格式,每种格式一般由不同的开发商支持。随着信息技术的发展和图像应用领域的不断拓宽,还会出现新的图像格式。因此,要进行图像处理,必须了解图像文件的格式, 即图像文件的数据构成。每一种图像文件均有一个文件头, 在文件头之后才是图像数据。文件头的内容由制作该图像文件的公司决定,一般包括文件类型、文件制作者、制作时间、版本号、 文件大小等内容。各种图像文件的制作还涉及到图像文件的压缩方式和存储效率等。2.3.1 BMP图像文件格式图像文件格式 第一部分为位图文件头BITMAPFILEHEADER, 它是一个结构体,其定义如下: typedef struct tagBITMAPFILEHEADER WORD bfType; DWORDbfSize; WORDbfReserved1; WORDbfReserved2; DWORDbfOffBits; BITMAPFILEHEADER; 这个结构的长度是固定的,为14个字节(WORD为无符号16位二进制整数,DWORD为无符号32位二进制整数)。 第二部分为位图信息头BITMAPINFOHEADER,也是一个结构,其定义如下:typedef struct tagBITMAPINFOHEADER DWORD biSize; LONGbiWidth; LONGbiHeight; WORDbiPlanes; WORDbiBitCount; DWORDbiCompression; DWORDbiSizeImage; LONGbiXPelsPerMeter; LONGbiYPelsPerMeter; DWORDbiClrUsed; DWORDbiClrImportant; BITMAPINFOHEADER; 这个结构的长度是固定的,为40个字节(LONG为32位二进制整数)。其中,biCompression的有效值为BI_RGB、 BI_RLE8、 BI_RLE4、BI_BITFIELDS,这都是一些Windows定义好的常量。由 于 RLE4和 RLE8的 压 缩 格 式 用 的 不 多 , 今 后 仅 讨 论biCompression的有效值为BI_RGB,即不压缩的情况。 第三部分为调色板(Palette),当然,这里是对那些需要调色板的位图文件而言的。真彩色图像是不需要调色板的, BITMAPINFOHEADER后直接是位图数据。调色板实际上是一个数组, 共有biClrUsed个元素(如果该值为零,则有2的biBitCount次方个元素)。数组中每个元素的类型是一个RGBQUAD结构, 占4个字节,其定义如下: typedef struct tagRGBQUAD BYTE rgbBlue; /该颜色的蓝色分量 BYTE rgbGreen;/该颜色的绿色分量 BYTE rgbRed;/该颜色的红色分量 BYTE rgbReserved;/保留值 RGBQUAD; 第四部分就是实际的图像数据。对于用到调色板的位图, 图像数据就是该像素颜色在调色板中的索引值,对于真彩色图像, 图像数据就是实际的R、 G、 B值。下面就2色、 16色、256色和真彩色位图分别介绍。 对于2色位图,用1位就可以表示该像素的颜色(一般0表示黑, 1表示白),所以一个字节可以表示8个像素。 对于16色位图,用4位可以表示一个像素的颜色,所以一个字节可以表示2个像素。 对于256色位图,一个字节刚好可以表示1个像素。 下面两点请读者注意: (1) 每一行的字节数必须是4的整数倍,如果不是,则需要补齐。这在前面介绍biSizeImage时已经提到过。 (2) BMP文件的数据存放是从下到上,从左到右的。也就是说, 从文件中最先读到的是图像最下面一行的左边第一个像素, 然后是左边第二个像素, 接下来是倒数第二行左边第一个像素, 左边第二个像素。依次类推, 最后得到的是最上面一行的最右边的一个像素。 2.2 色度学基础色度学基础 在前面学习灰度图像时,图像的像素值是光强, 即二维空间变量的函数f(x, y)。如果把灰度值看成是二维空间变量和光谱变量的函数f(x, y, ),即多光谱图像,也就是通常所说的彩色图像。在计算机上显示一幅彩色图像时,每一个像素的颜色是通过三种基本颜色(即红、绿、蓝)合成的,即最常见的RGB颜色模型。要理解颜色模型, 首先应了解人的视觉系统。 1 三色原理三色原理 在人的视觉系统中存在着杆状细胞和锥状细胞两种感光细胞。杆状细胞为暗视器官,锥状细胞是明视器官,在照度足够高时起作用, 并能分别辨颜色。锥状细胞将电磁光谱的可见部分分为三个波段:红、绿、蓝。由于这个原因,这三种颜色被称为三基色, 图2-7表示了人类视觉系统三类锥状细胞的光谱敏感曲线。 颜色由光波的频率决定 图2-7 人类感光细胞的敏感曲线 根据人眼的结构,所有颜色都可看作是三种基本颜色R表示红(Red)、 G表示绿(Green)和B表示蓝(Blue)按照不同的比例组合而成。为了建立标准,国际照度委员会(CIE)早在1931年就规定三种基本色的波长分别为R:700 nm,G:546.1 nm,B: 435.8 nm。 前面已讲过,一幅彩色图像的像素值可看作是光强和波长的函数值f(x, y, ),但实际使用时,将其看作是一幅普通二维图像, 且每个像素有红、绿、蓝三个灰度值会更直观些。 2 颜色的三个属性颜色的三个属性 颜色是外界光刺激作用于人的视觉器官而产生的主观感觉。颜色分两大类:非彩色和彩色。非彩色是指黑色、白色和介于这两者之间深浅不同的灰色, 也称为无色系列。彩色是指除了非彩色以外的各种颜色。颜色有三个基本属性, 分别是色调、 饱和度和亮度。基于这三个基本属性,提出了一种重要的颜色模型HSI(Hue、 Saturation、 Intensity)。在HSI颜色模型部分中, 我们将详细介绍这三个基本属性。 为了科学地定量描述和使用颜色,人们提出了各种颜色模型。目前常用的颜色模型按用途可分为两类,一类面向诸如视频监视器、 彩色摄像机或打印机之类的硬件设备。另一类面向以彩色处理为目的的应用,如动画中的彩色图形。面向硬件设备的最常用彩色模型是RGB模型,而面向彩色处理的最常用模型是HSI模型。另外,在印刷工业上和电视信号传输中,经常使用CMYK和YUV色彩系统。 2.3 颜色模型颜色模型 1. RGB模型模型 RGB模型用三维空间中的一个点来表示一种颜色,如图2-8所示。每个点有三个分量,分别代表该点颜色的红、绿、蓝亮度值, 亮度值限定在0, 1。 在RGB模型立方体中,原点所对应的颜色为黑色,它的三个分量值都为零。距离原点最远的顶点对应的颜色为白色,它的三个分量值都为1。从黑到白的灰度值分布在这两个点的连线上, 该线称为灰色线。立方体内其余各点对应不同的颜色。彩色立方体中有三个角对应于三基色红、绿、蓝。剩下的三个角对应于三基色的三个补色黄色、 青色(蓝绿色)、品红(紫色)。 图2-8 RGB模型单位立方体 2. HSI模型模型 HSI模型是Munseu提出的, 它反映了人的视觉系统观察彩色的方式,在艺术上经常使用HSI模型。HSI模型中,H表示色调(Hue),S表示饱和度(Saturation), I表示亮度(Intensity,对应成像亮度和图像灰度)。这个模型的建立基于两个重要的事实: I分量与图像的彩色信息无关; H和S分量与人感受颜色的方式是紧密相联的。这些特点使得HSI模型非常适合借助人的视觉系统来感知彩色特性的图像处理算法。 图2-9中的色相环描述了色相和饱和度两个参数。色相由角度表示,它反映了该彩色最接近什么样的光谱波长。一般假定0表示的颜色为红色, 120的为绿色, 240的为蓝色。 饱和度是指一个颜色的鲜明程度,饱和度越高,颜色越深, 如深红,深绿。饱和度参数是色环的原点(圆心)到彩色点的半径的长度。由色相环可以看出,环的边界上纯的或饱和的颜色, 其饱和度值为1。在中心是中性(灰色)阴影, 饱和度为0。 图2-9 色相环 亮度是指光波作用于感受器所发生的效应,其大小由物体反射系数来决定,反射系数越大,物体的亮度愈大,反之愈小。 HSI模型的三个属性定义了一个三维柱形空间, 如图2-10所示。灰度阴影沿着轴线从底部的黑变到顶部的白,具有最高亮度。最大饱和度的颜色位于圆柱上顶面的圆周上。 图2-10 柱形彩色空间 1) RGB转换到HSI 对任何3个0, 1范围内的R、G、B值,其对应HSI模型中的I、S、H分量的计算公式为 (2-4) 式(2-4)计算出的H值的范围为 0, 180, 对应于。在时,值大于180,只要令360H,即可把转换到180,360区间。所以若将两种情况都考虑上, 则由式(2-4)算得的是在0,360范围内。当S0时对应的是无色彩的中心点,这时H就没有意义,此时定义H为0。当I0时,S也没有意义。 2) HSI转换到RGB 假设S、I的值在0,1之间,R、G、B的值也在0,1之间,则HSI转换为RGB的公式为(分成3段以利用对称性) (1)当H在0,120之间 (2-5) (2) 当H在120,240之间 (2-6) (3) 当H在240,360之间 (2-7) 3. CMYK表色系统表色系统 CMYK表色系统也是一种常用的表示颜色的方式。计算机屏幕显示通常用RGB表色系统,它是通过相加来产生其他颜色, 这种做法通常称为加色合成法(Additive Color Synthesis)。而在印刷工业上则通常用CMYK表色系统,它是通过颜色相减来产生其他颜色的,所以称这种方式为减色合成法(Subtractive Color Synthesis)。 CMYK模式的原色为青色(Cyan)、品红色(Magenta)、黄色(Yellow)和黑色(Black)。在处理图像时,一般不用CMYK模式, 主要是因为这种模式的文件大, 占用的磁盘空间和内存大。这种模式一般在印刷时使用。 4. 其他表色系其他表色系 1) YUV电视信号彩色坐标系统 YUV彩色电视信号传输时,将R、G、B改组成亮度信号和色度信号。PAL制式将R、G、B三色信号改组成Y、U、V信号, 其中Y信号表示亮度,U、V信号是色差信号。 RGB与YUV之间的对应关系如下: (2-9) (2-8) 2) Lab表色系 Lab颜色模型是CIE于1976年推荐的设计成符合孟塞尔彩色系统的表色系。Lab 颜色由亮度或光亮度分量L 和a、b两个色度分量组成。其中a在的正向数值越大表示越红,在负向的数值越大则表示越绿;b在的正向数值越大表示越黄,在负向的数值越大表示越蓝。Lab颜色与设备无关, 无论使用何种设备(如显示器、打印机、计算机或扫描仪)创建或输出图像,这种模型都能生成一致的颜色。 (2-10)式中X0、Y0、Z0为标准白色对应的X、Y、Z值。 实验实验2 图像的读取和显示图像的读取和显示1.1.图像的读取图像的读取 2.2.图像的显示图像的显示
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号