资源预览内容
第1页 / 共13页
第2页 / 共13页
第3页 / 共13页
第4页 / 共13页
第5页 / 共13页
第6页 / 共13页
第7页 / 共13页
第8页 / 共13页
第9页 / 共13页
第10页 / 共13页
亲,该文档总共13页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
第五章平面向量5.1平面向量的概念、线性运算及平面向量的坐标表示高考数学高考数学知识清单3.共线向量定理向量a(a0)与向量b共线,当且仅当有唯一一个实数,使b=a.4.平面向量基本定理及坐标表示(1)平面向量基本定理如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数1、2,使a=1e1+2e2.其中,不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底.(2)平面向量的正交分解把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.(3)平面向量的坐标表示在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为基底,对于平面内的一个向量a,由平面向量基本定理可知,有且只有一对实数x,y,使a=xi+yj,这样,平面内的任一向量a都可由x,y唯一确定,我们把有序数对(x,y)叫做向量a的坐标,记作a=(x,y),其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标.设=xi+yj,则向量的坐标(x,y)就是终点A的坐标,即若=(x,y),则A点坐标为(x,y),反之亦成立(O是坐标原点).5.平面向量的坐标运算(1)向量的加法、减法、数乘运算及求向量的模设a=(x1,y1),b=(x2,y2),则a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),a=(x1,y1),|a|=.(2)向量坐标的求法已知A(x1,y1),B(x2,y2),则=(x2-x1,y2-y1),即一个向量的坐标等于该向量终点的坐标减去始点的坐标.若向量的起点是坐标原点,则终点坐标即为向量的坐标. 平面向量的线性运算平面向量的线性运算1.用已知向量来表示其他向量是解决向量问题的常用方法,要尽可能地将相关向量转化到平行四边形或三角形中去.2.解决点共线或向量共线问题时,要结合共线向量定理进行,但应注意向量共线与三点共线的区别与联系,当两个向量共线且有公共点时,才能得到三点共线.3.要注意待定系数法和方程思想的运用.例1如图所示,在ABO中,=,=,AD与BC相交于点M.设=a,=b.方法技巧方法1(1)试用a和b表示向量;(2)在线段AC上取一点E,在线段BD上取一点F,使EF过点M,设=,=,当EF为AD时,=1,=,此时+=7;当EF为CB时,=,=1,此时+=7,有人得出如下结论:无论E、F在线段AC、BD上如何变动,+=7总成立.试问他的这个结论对吗?请说明理由.解析(1)设=ma+nb,则=-=ma+nb-a=(m-1)a+nb,=-=-=-a+b.A、M、D三点共线,与共线.故存在实数t,使得=t,即(m-1)a+nb=t,(m-1)a+nb=-ta+tb.消去t得m-1=-2n,即m+2n=1.=-=ma+nb-a=a+nb,=-=b-a=-a+b,C、M、B三点共线,与共线,可得4m+n=1.联立,解得m=,n=.故=a+b.(2)他的结论是对的.理由如下:=-=a+b-a=a+b,=-=-=-a+b,E、M、F三点共线,与共线.故存在实数k,使得=k,即a+b=k(-a+b)=-ka+kb,消去k得-=-.整理得+=7. 平面向量的坐标运算平面向量的坐标运算1.向量的坐标运算使向量的运算完全代数化,将数与形有机结合起来.2.根据平行的条件建立方程求参数是解决向量共线问题的常用方法,充分体现了方程思想在向量中的应用.例2平面内给定三个向量a=(3,2),b=(-1,2),c=(4,1).(1)求满足a=mb+nc的实数m、n;(2)若(a+kc)(2b-a),求实数k;(3)设d=(x,y),满足(d-c)(a+b)且|d-c|=1,求d.方法2解析(1)由题意得(3,2)=m(-1,2)+n(4,1),所以解得(2)由题意知a+kc=(3+4k,2+k),2b-a=(-5,2),(a+kc)(2b-a),2(3+4k)-(-5)(2+k)=0,k=-.(3)由题意知d-c=(x-4,y-1),a+b=(2,4),因为(d-c)(a+b)且|d-c|=1,解得或d=或.
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号