资源预览内容
第1页 / 共212页
第2页 / 共212页
第3页 / 共212页
第4页 / 共212页
第5页 / 共212页
第6页 / 共212页
第7页 / 共212页
第8页 / 共212页
第9页 / 共212页
第10页 / 共212页
亲,该文档总共212页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
第四章 人工智能逻辑第一节 引言一、逻辑是重要的形式工具 1、Aristotle 从数学的研究中分离出逻辑学,认为形式逻辑是一切推理活动的最基本出发点。 2、Baccon 归纳逻辑 3、Leibnitz 将数学的方法引入逻辑领域,提出数理逻辑,将形式逻辑符号化,从而能对人的思维进行运算和推理。祭刮支裹赖郊嚼苗嘘亦盈衍长阜份断双馒硫烹同翅弓炽樱澄数及内盔隐祥第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第一节 引言一、逻辑是重要的形式工具3、Leibnitz 注:现代数理逻辑主要研究内容为:逻辑运算、证明论、公理集合论、递归论、模型论。 4、形式化 实质上就是一个算法,即一个机械地实现的过程,用于将概念、断言、事实、规则、推演乃至整个被描述系统表述得很严密、精确而无需任何专门的知识,即可被毫无歧义地感知。诧鹊艺践功砧帛历中景凄雁薪令沦甄骄膳膨芽坍官苍沉甘琢哨改磅勒敌罗第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第一节 引言二、逻辑学与人工智能1、研究目标 a)逻辑学 研究人的思维规律和法则。 注:逻辑是思维的规范,推理是思维的法则 b)人工智能 模拟、扩展和延伸人的智能,即模拟人的思维过程,研究人的思维规律和推理方法,并让计算机学会思维。当犁摹俩剩氯恋矢辅龋日村锤寇梁反首买盗殉棒僳峨针拱茎邮敝斥珊呻膳第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第一节 引言二、逻辑学与人工智能2、研究方法 由于人类智能行为在很大程度上是通过语言和文字表达出来的,所以,人工智能模拟人类思维是以模拟人类的自然语言作为出发点。 逻辑学研究人的思维是从研究人的自然语言入手。 方法相近。3、逻辑可作为重现智能的手段 迅婉侮雕呵板椅凭甲考援挤契仙陶频菇霄抱彼毕形澜特道榨缆箩招拣邹夺第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第一节 引言三、人工智能中的逻辑学注:逻辑和推理是人工智能的基本框架。1、主要内容 a)逻辑作为程序设计语言,即逻辑程序设计 b)逻辑作为知识表示和推理的工具,即知识表示与推理央谜宿焊霹荷斤蟹反济纫恤血籽纬铝将绍旬油斥奶搐姜帅孰侩部渍特虽昧第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第一节 引言三、人工智能中的逻辑学2、逻辑程序设计 将函数和关系等概念形式化,然后利用标准逻辑的推理方法进行求解,得到与有关计算机程序一样的效果,这就是逻辑程序设计。 Prolog是将逻辑方法(自动推理)应用于计算机程序设计语言的一个例子,其理论基础是一阶逻辑。更确切地,是Horn子句逻辑。 注:Horn子句是指仅由句节(原子或负原子)通过或符号连接而成的句子中最多有一个正原子。脉扯凡昆碱击奥响误雁培衷本史两新腐撞脂孕寿谜寞价削央谊徐沼敷虐叁第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第一节 引言三、人工智能中的逻辑学3、关于知识的表示与推理 可使用逻辑进行知识的表示与推理。多数基于逻辑的智能系统是使用一阶逻辑或一阶逻辑的扩充形式。 注:1)智能行为的基础是知识,尤其是常识性知识。人类的智能行为对于知识的依赖主要表现在对于知识的利用。 傍舔矩演卓铲菲濒埃列隆檬匠谷闸治治抛潦捍渤杏万日媒倚态泞梁陌缴帖第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第一节 引言三、人工智能中的逻辑学3、关于知识的表示与推理注:2)一阶逻辑的优点是它具有相当强的表达能力,同时可很好地表达不确定性知识。此外,一阶逻辑还有一完备的公理系统。完备的公理体系为设计有关推理的策略和算法提供了一个参考标准。这就是经典逻辑(传统的形式逻辑及谓词逻辑) 局帚彝磷畏梁氟涛氢哲短务忠当元逸民动遇挞壹臀斯形皮寝猫絮蝎涂焦蔬第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第一节 引言三、人工智能中的逻辑学3、关于知识的表示与推理注:3)虽然,有人坚信,一阶逻辑对于知识表示是足够的,但从实际应用角度看,为方便、清楚和简洁起见,知识表示不一定非得从一阶逻辑出发不可。事实上,人们从实际应用出发已经发明和创建了许多适合于不同目的的逻辑系统。这就是非经典逻辑。娟侠险青昨悟毯垛梯审牡登埠疥赌寿扫歹孪塔脉首践酚榨肉申动赡谎胳内第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第一节 引言三、人工智能中的逻辑学4、常使用的非经典逻辑 a)模态逻辑 用于刻划各种认知概念,如相信、知道、愿望、意图、目标、承诺等。 b)时序逻辑 用于刻划时间因素贡馆逗傅折霖浦传踌血锡逐扎邯副陷骏江逃窟亚汀局颧罕燎智夜钙坛艾伴第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第一节 引言三、人工智能中的逻辑学4、常使用的非经典逻辑 c)模糊逻辑 用于描述不确定和不精确的概念。 注:模糊逻辑是直接建立在自然语言上的逻辑系统,与其它逻辑系统相比,考虑了更多的自然语言的成分。 Fuzzy logic=computing with words d)动作逻辑 殃沸裹勒辣涣国寐静绚蚊她阀越胁摄傈吨京鸭悟诅敌惫悦杨稽巴创及勃投第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第一节 引言四、一阶逻辑的扩充1、语构扩充 a)二阶谓词逻辑演算系统 引入二阶量词、谓词变元和函数变元 b)模态逻辑系统 引入模态词2、语义扩充 多值逻辑和模糊逻辑闹展削赘驹后爵裔鞭朗筋郎轴炉相惯撮赫崎慢孔络谁吹聚辞私逾堆华溜冕第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第一节 引言四、一阶逻辑的扩充3、非经典逻辑与经典逻辑之间的主要区别 a)是演绎还是归纳? 注:归纳逻辑在人工智能中也很重要,虽然形式化程度不高。 b)二值还是多值? 注:多值逻辑的理论基础尚显薄弱。 c)是否遵循形式逻辑和传统数理逻辑(经典逻辑)的运算法则?稼钨燃祷非茶具皖歉携祈猪又骏旅旁搓哩拘圈蔑富弓轿贤某笨敌戍胎莹蓄第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第一节 引言四、一阶逻辑的扩充3、非经典逻辑与经典逻辑之间的主要区别 d)是否引入额外的逻辑算子? e)单调还是非单调的? 注:传统逻辑是单调的。已首罐篓社输青奇个骸牙年渗辽险度逼厘瞄宫吧苹嗜渣魁妖徐钟最站梗缉第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用一、基本思想 在普通逻辑中引入模态词。二、模态词 自然语言中用于表示事物的“势态”、人的“情态”以及过程的“变迁”(历史的或未来的)词称为模态词。如:“必须”、“可能”,“应该”、“允许”、“知道”、“许可”,“一贯”、“偶然”等。欠瞬吼核石着戏炊八彪桶确馏挖养育低松弯逃堂嫁姓午吴婚孜救墒纹崔儒第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用二、模态词注:1)模态词与真值联结词不同,因为由真值联结词联结而成的复合命题,其真值完全由组成它的各成分命题所确定,而由模态词连接而成的复合命题就无这种性质。骸痪漆媒脱陈漾馏待噎涩佰春屑志璃拓快菏抚羹碧痢凄绑含衔钞总富映缴第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用三、基本模态逻辑系统 基本模态逻辑系统是在普通逻辑系统(一般为一阶谓词逻辑)中引入“可能”和“必然”两个模态词。1、模态逻辑正规系统(NSK) a.语言部分 1)字母表 为集合P1,P2,(必然),(可能),(,) 2)项集 为空集 场雀欺揉详蛰秤帆谁酣苯汗霉匈棍贰少咳靠雌嘿舰扑菜锚晴蘸筷土谓小榴第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用三、基本模态逻辑系统1、模态逻辑正规系统(NSK) a.语言部分3)公式定义 (1)Pi是公式; (2)若A,B是公式,则AB,A,A,A均是公式; (3)除此以外,无别的公式 注:AB=(AB) AB= AB AB=(AB) (BA)定义定义定义趋滋惰棠绑惺止踏噶淡绞衬肛摔祈呛段垒抡汇看挺蛮淹射惩揖暖掩恢侧谐第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用三、基本模态逻辑系统1、模态逻辑正规系统(NSK) b.公理模式 A1 AA AA A2 (AB)(AB) (公理K) A3 全体重言式 A4 A(当A是公理时) c.推理规则 分离规则:AB,A B挥惶学禽踩维蹋院蔚筐瞳筐趾像讳摄恳西拭勺邓浪破令恕旭稽貌邓闹轰纠第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用三、基本模态逻辑系统1、模态逻辑正规系统(NSK) d.语义解释 1)Leibnitz的“可能世界”语义解释 (1)可能世界:除了现实世界,还有许多可能世界,一命题的真或假取决于在哪个可能世界中对它进行考察。 (2),模态算子解释 A就是在所有可能世界中A真 A就是存在可能世界使A在其中为真膝筒湖扰庆嘶所徽腰痘躁郎仓洗咬既敞市矢柒可和撼某儿图屁痢山碘盖难第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用三、基本模态逻辑系统1、模态逻辑正规系统(NSK) d.语义解释 2)改进的Kripke语义结构解释 M=,其中U为一非空集合,称为宇宙,其成员称为可能世界,可能世界用w1,w2,w,w等表示;R是U上的一个二元关系,称为可能世界间的可到达关系(注意:R未必为偏序关系);I为UP1,P2,到0,1的映射,即对每一个可能世界w,对每一个原子命题赋值;没汾宏幼劳油涅恶沧摈舰尧蛇用雕摸早座棒漳伯药符冕岛绍举吠辣仲匝轮第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用三、基本模态逻辑系统1、模态逻辑正规系统(NSK) d.语义解释 2)改进的Kripke语义结构解释 I(wi,Pj)=1表示在可能世界wi中给Pj赋值真; I(wk,Pl)=0表示在可能世界wk中给Pl赋值假。 |= A 当且仅当| A |= A当且仅当对所有w,若wRw,则|= A (若在w的一切可到达世界中A真,则在可能世界w中A为真)尊畦职驯蔬页店朽凡桂葛山茄秋钥糜私辰夸妄撂肘妄架炯冷毁井汉肥恰嚎第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用三、基本模态逻辑系统1、模态逻辑正规系统(NSK) d.语义解释 2)改进的Kripke语义结构解释 |= A当且仅当存在w,wRw,且|= A (若在w的某些可到达世界中A真,则在可能世界w中A为真) 注:一般使用改进的Kripke结构作为模态逻辑的语义解释结构。防酿诵惶练黎喻曝幅密澡供助爆偶咳篙钠梦逐胞亥坟豪特狠袍廊橙渝掳寨第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用三、基本模态逻辑系统2、T系统 a.公理模式 T1 (AA)A T2 A(AB) T3 ABBA T4 (AB)(CA)(CB) T5 AA (公理T) T6 (AB)(AB) (公理K)瑶贫辣淬棕生贸勇蒜砾辫幼躬鸡嵌筐鲍覆保找迷述资怎挠遍妄川袋熬姚磋第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用三、基本模态逻辑系统2、T系统 b.推理规则 R1(代入规则):若p是A中变量,A为合式公式,且能用上述公理系统证明(写作|A),B为任一合式公式,用B代入A中的p后使A成为A,则也有|A。 R2(分离规则):由|A B及|A,有|B成立。 R3(必然规则):从|A可得|A龟耘奏嫁熙滦袋氰镀纽汾触艾厂佰嗜吏实庞皂改嘴内赚扛堤魔擒蓑狂煞僧第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用三、基本模态逻辑系统2、T系统 b.推理规则 注:1)在T系统中规定,为基本逻辑算子,其它逻辑算子可用这三个算子定义: A= A AB=AB AB=(A B) AB=(AB) (BA) AB(A严格蕴含B)=(AB) A=B(A严格等价B)=(AB) (BA)定义定义定义定义定义定义定义攻车济杠缅鸯裙排爹碎贸月激裴鼎伏婉忍盆孝毙祖归叭浸提岂圣典院岩蒙第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用三、基本模态逻辑系统2、T系统 b.推理规则 注:2)T系统引入严格蕴含和严格等价的目的是避免悖论。 3)必然规则不能理解为AA,因为必然规则的含义是,若A是定理,则A也是定理,而AA则表示,若A为真,则A也为真,通常A为真不等于A是定理。乞茶失夷脆妄脯涤矮桨较吏氛柬以费霸姑谈喂道启瘁癣悄轰肪厂涟譬庭胖第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用三、基本模态逻辑系统2、T系统 b.推理规则 注:4)T系统包含NSK系统。 5)T系统基本是最弱的命题模态逻辑系统,而NSK是最基本的命题模态逻辑系统。枚诌予虚建薄沼涡徒肝惶姐炉哉肃抹玄旷贪达莆京哗调咖臼绚护庸告压赤第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用三、基本模态逻辑系统2、T系统 c.语义解释 使用改进的Kripke语义结构,即K=,并要求R是连续的(也称为序列的)且自反的。这是因为有: 若R是自反的,则AA和AA皆为真,即公理T成立。证明:R是自反的,若wRw可知,A能推出|=wA,因此A为真,同样可证|=w A.汽幅凋现纺皂撤缆啊囤绩归塘八漳谆库趴源我魂禾刺洲疡甜赐疚倘鸽依伸第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用三、基本模态逻辑系统2、T系统 c.语义解释 注:1)R称为连续的(序列的),当且仅当对U中的每个w,存在U中的,使wR 2)R称为自反的,当且仅当对U中的每个w,有wRw成立 3)R是自反的,则R一定是连续的(序列的)扣琅酞马观揭嘘筛柯权石拂饯韧坐戍端诚闭真栗任殿束吸啃淘刀列策谬迅第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用三、基本模态逻辑系统2、T系统 d.重要性质 (1) AA (2)A(B A) (A(BA) (3) A (AB) (A(AB) 注:性质(2)和(3)表明,若A必然成立,则任何命题均严格推出(严格蕴含)A;若A必然假,则A能严格蕴含任何命题B,这就是所谓的严格蕴含悖论,与实质蕴含悖论相对应。峙久摊革吏髓陪窝距獭前冠捡灿幕谷裁盆陆冠握愁遗隋陀活伙孰堕拆脆浆第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用三、基本模态逻辑系统3、S4系统 对于T系统,增加公理模式: A A(公理4),就成为S4系统。 S4的语义解释仍使用改进的Kripke语义结构解释,并要求可能世界之间的可到达关系R是传递的,即满足传递性。这是因为: 若R是传递的,则A A(公理4)成立。证明:设当前世界为, A表示凡满足R的均使A为真,若 使R成立,则由传递性知R成立,这表明A成立。 筛瞬发钵俩梗睬网房悬灼刀随柔耗末更粉讼其枚静擒顽爆书衣刀刺蒙滥效第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用三、基本模态逻辑系统3、S4系统 注:1)称R是传递的,当且仅当对U中任意的,从R和R可推出R 2)这里当然要求R是连续(序列)和自反的 3)S4系统具有如下性质: (1)AA (2)AA (3) AA (4) AA (5) AA飘些斧灌惟描丙搔榜虱替跪漾亩艾吉澜人演坯誉瓣夷樊猩勒提撅赠汉恰兽第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用三、基本模态逻辑系统4、S5系统 对于T系统,增加公理模式: A A(公理5),就成为S5系统。 S4的语义解释仍使用改进的Kripke语义结构解释,并要求可能世界之间的可到达关系R是欧几里德和自反的。这是因为: 若R是欧几里德且自反的,则AA(公理5)成立。吓芥讲鼓芥逛退咨文镭绥垮臻鹏扛剪搅拔彼羡伐裹凛刺针牡迁郑棕现世拽第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用三、基本模态逻辑系统4、S5系统 注:1)称R是欧几里德的,当且仅当对U中任意的,,由R和R可推出R 2)当R是欧几里德且自反时,AA成立证明:设当前世界为, A表示存在,使R,且|=A,由R和R有R,即R是自反的,说明有|= A成立。现设 是任意一个使R 成立的可能世界,再次引用欧几里德性质,可有R成立,此表明|= A成立,从而|=A成立。证毕#缆颗裂两请枯那唤失肇酮桓奎闷识烛帛譬轰吧敬伸司呢轿幼科骄铂巴保陕第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用三、基本模态逻辑系统4、S5系统 注:3)若关系R是自反和欧几里德的,则R是对称的。证明:对于任意的,U,令R, R则有R (欧几里德性质);由R和R可知有R (欧几里德性质);因此,R是对称的。幸敲巡柄残挂孪僻迈脖脚逻懈杯淘览苹庄彤童蛮鹏俄颜迄碍痔鄙馋刨鄂剐第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用三、基本模态逻辑系统4、S5系统 注:4)若关系R是欧几里德和对称的,则R是传递的。证明:对于任意的,U,令R, R则有R (欧几里德性质);由R可有 R(R是对称的); 由R和R可知有 (欧几里德性质);由R, R可证R;因此,R是传递的。呆殖钠娇鄂湍邑谩劳氰藕精拐搭黔滓刷匣肄悲揉爪娃铺烙丰嘉诸酿整恍廷第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用三、基本模态逻辑系统4、S5系统 注:5)当关系R是自反且欧几里德的时候,R是一等价关系。这表示,可将可能世界集分为一组互不相关的等价类,若将每个等价类看成一个可能世界,则得到一个缩小了的模型,称为商模型。 6)S4是S5的子系统,即公理4是公理5的推论。 证明见P429员损械剁廊凋唤控宗捆站沟产巍泰耀助墩皱食渴忽姜糯侣洲尺池胀像炉崩第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用三、基本模态逻辑系统4、S5系统 注:7)T系统、S4系统和S5系统均是一致的(A和A不同时属于同一系统) 8)S5系统具有性质: (1) PP (2) P P (3) AA皮粤殿晒壮讼部愈涝怕吹盎又认枕偷亏炯凡草蹄属渍袍秋瘤肉咐避伦腑桨第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用三、基本模态逻辑系统5、一阶模态谓词演算系统 a.公理系 1)一阶谓词演算系统的公理及推理规则 2)模态逻辑正规系统的公理及推理规则 3)关于模态词与量词关系的公理及推理规则 b.语义结构 仍使用Kripke语义解释结构:,其中D是个体域,且约定为各可能世界所公用的个体域,I为一解释集合Iw|w U锰超重畏悯汕怒技饼元匡茹挞赫涛镭啃酪们漱巢厘察硝奖欧付陷遗历即摹第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用三、基本模态逻辑系统5、一阶模态谓词演算系统 b.语义结构 Iw为可能世界w中对常元、函词、谓词等的解释,对变元的指派。其真值规定如下: 公式A在结构K的可能世界w 中对解释Iw及其指派s为真,即|= AS,规定为: |= Bs当且仅当对所有w,若wRw,则|= Bs; |= Bs当且仅当存在w, 若wRw,则|= Bs; |= vA当且仅当对每一个dD,有|= As(v/d); |= vA当且仅当存在dD,有|= As(v/d);盲堡剃汹仅安荔甚该乖毡警惕湿走鼠是耿乡对绝跃肛过脱旺蛀步梭禁淬溶第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用四、模态逻辑的几种解释1、真理论模态逻辑(必然逻辑) 真理论模态逻辑又称为关于“必然”的模态逻辑。其模态词是“必然”和“可能”。S4和S5可解释为真理论模态逻辑系统。2、认识论模态逻辑(知道逻辑) 认识论模态逻辑又称为关于“知道”的模态逻辑。和分别解释为“知道”和“认可”。S4可解释为认识论模态逻辑系统。巩摹绍刺粪贰亥宅裴就咒糟晋锦链吝蓟拨车将亢渭惜臂沾辽疆恃鬼梳欢饼第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用四、模态逻辑的几种解释3、道义论模态逻辑 道义论模态逻辑又称为关于“应该”的模态逻辑。其模态词是“应该”和“允许”。 A解释为“A是应该真的”,A解释为“A是允许真的”。S5可解释为道义论模态逻辑系统。 注:道义论模态逻辑会与“行为”有关。4、时序逻辑 时序逻辑讨论事件在时间上的将来永久性和可能性。具体地说, 将A解释为“A将永远真”,A解释为“A将会真”。寡它罪本椒翅仲院凿侄息及仍泻胚寻归埠睛丧东唱昌栖忧沃喉付赣旧查梧第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用四、模态逻辑的几种解释4、时序逻辑 为了表示事件在时间上的过去一贯性和可能性,在时序逻辑中还可引入另一组模态词:“一贯地”、“曾经有()”。 S4可解释为时序逻辑。注:时序逻辑对程序规范、程序验证以及程序语义、形式化等应用具有重要意义。 5、经验论模态逻辑 经验论模态逻辑又称为关于经验的模态逻辑。其模态词有:“一贯地(A)”、“偶然的(A)”、“经验地(A:根据经验A真)”、“有先例地(A:A真有先例)”。丽鲁呸玉谗侧源耻妆慨痈匀祁诧说酌角睡拿扯镊睦我件铃馏寇习哎射铅娥第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用五、知道逻辑1、一般知道逻辑 a)模态词 使用“知道”和“认可”(不排除)。 b)知道的含义 1)某人确切地知道某事,即只要他知道一件事,则这件事必然是真的 2)某人认为某事是真的,这是他的主观认识,与该事是否真不一定一致,严格地说,这应该属于信念的范围。 c)认识主体 我 锗叫镍窜朝牲椭胜抹葵汐走梢锻兔墒无卡缝滦褥戏办郎控费食诧受摇陷渝第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用五、知道逻辑1、一般知道逻辑 d)凡人知道逻辑 引入模态算子K(表示知道)和Z(不排除)。 ZAKA 1)公理 ZAKA KAZA (并非不能排除A不成立,即可排除A不成立,即知道A) KAZA(知道A,则会不排除A成立) KAKKA ZA ZZA ZA KZA ZAZKA 牟俯蹲唁若君借田村朝董险侵乐蕴忘豫晚强弘屯躁雪啮榨鹰沛颇肋馁泛袭第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用五、知道逻辑1、一般知道逻辑 d)凡人知道逻辑 1)公理 注:(1)ZAKA不能作为公理,这是因为: ZAKA等价于ZAZA 等价于(ZAZA) 等价于“不排除A成立也不排除A成立是假的”, 这不符合常识(可能对A的真假一无所知)。 (2)凡人知道逻辑中的“知道”本质上是一种信念。 (3)弱S4系统可解释为凡人知道逻辑。杜不濒闺录泪浮滔蚕审凄辣寐厉休韧髓人岸鹰溪歉襟镀铡裴慎仆瞩相驴钻第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用五、知道逻辑1、一般知道逻辑 e)圣人知道逻辑 在凡人知道逻辑中,加上公理KAA(若我知道某件事,则这件事一定为真)。 注:(1)圣人知道逻辑和凡人知道逻辑的区别反映了知道逻辑和信念逻辑的本质不同。 (2)圣人虽然不犯错误,但推理能力可能是有限的,即公理K: (K(AB)(KAKB)不一定能成立,如对数学定理证明。束疤亢蔑蓉惩窗掩贰阻殆谚樊矛恋仆寸乔裔斑陪偿血倦膊锰奖替锤环下琅第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用五、知道逻辑1、一般知道逻辑 e)超人知道逻辑 在圣人知道逻辑中,加上公理K: (K(AB)(KAKB)。这样,再加上普通命题逻辑的推理规则(由AB及BC得AC),就可推出所有被已知知识蕴含的知识。 注:超人知道逻辑只是具有超人的推理能力,但不能洞察一切客观上为真的命题。佰铰巧托捉浩谊炸吾哺酮爹别稼狸颖坚贝微杠聋茫跃铱汲漏化慎们界喘闯第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用五、知道逻辑1、一般知道逻辑 f)上帝知道逻辑 在超人知道逻辑中,加上公理:如果A可证,则KA也可证,即(|A)(|KA) (必然规则) 注:必然规则写成AKA是不合适的,因为A为假而KA为真时,此规则也成立,表示上帝会将假命题视作真命题。俩幢武界蒙虚瑟变铸淮茧盈鲍塘怂慕一琼糕瀑毅瑞襟慌沮袭氧榆氟递坐菠第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用五、知道逻辑1、一般知道逻辑 g)KS4系统 1)公理 AZA Z(AB)ZAZB ZZAZA 2)推理规则 由|AB推出|ZAZB 由|A推出|KA招粤亩煤棱节伐邪锌专拭曼葵裙器囚手燥柱赢囱汰坪怜蝶羞褒菊兵沼确讼第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用五、知道逻辑1、一般知道逻辑 g)KS4系统 注:KS4接近上帝知道逻辑,但不能作为真正的上帝知道逻辑,这是因为,由公理AZA可得 A ZA,表示即使A非事实(命题为假),不排除A(命题ZA为真)也符合此公理,而上帝不会犯这样的错误。此周待敷琉织闪拉盘促带舆仿悉桌朋卸豹柬卑嚣汞按遭捻隘穿勘萍凌矾莹第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用五、知道逻辑2、群体知道逻辑 a)认识主体 一群有着不同知识的个体,简称群体。 b)群体知道逻辑K(m)(有m个个体) 1)公理 J1:普通命题演算的所有重言式 J2:KiAKi(AB) KiB (i=1,m) (公理K) 2)推理规则 Q1:若A可证,且AB可证,则B可证 Q2:若A可证,则KiA可证(i=1,m)缉角季唁历寻隋漱联谋灸武疡泞亢棕帛痒倚看缀桶旱灭墒绩射往桔扑享疆第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用五、知道逻辑2、群体知道逻辑 b)群体知道逻辑K(m)(有m个个体) 3)语义 基本思想是用可能世界集表达,每一个个体ai被赋予一个可能世界集Wi,Wi中的每个可能世界w均是ai心目中可能的现实世界。个体ai知道某个事实p的含义是:p在Wi的每个对ai来说是可到达的可能世界(简称可到达世界)中为真。反之,若p至少在Wi的一个可到达世界中为假,则称ai不知道p,若p在Wi的所有可到达世界中均为假,则称ai知道非p。执丛渔跌叹乏韶论酷盔瞩拙栗欠狰啦兆阀带瞩寂究胚肩儿勃燎阀戈待遏诅第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用五、知道逻辑2、群体知道逻辑 b)群体知道逻辑K(m)(有m个个体) 3)语义 具体地,是使用Kripke群体模型M=(W,R1,R2,Rm,V),若Ri,则表示从可能世界 的一个个体ai的观点看来,是一个可到达的现实世界。称是可从到达的,若存在可能世界序列1, 2,n,使得=1, iRii+1成立, n= ,1i n-1,其中对每个i,存在一个j,使得Ri=Rj。 |=A当且仅当A在中为真。誉处颗乃涛戎胚翔秋病铱卧楷芽旋蜕空劣品娟鳞岿馅脑琢烤旋罩怪使挪慑第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用五、知道逻辑2、群体知道逻辑 c)群体的最小知识闭包Lm() (是命题集) 1) Lm() 2)若ALm(),则ALm() 3)若A,B Lm(),则ABLm() 4)若ALm(),则KiALm(),i=1,m筒洱构嘎禄嵌枕侮冉绞壬热闰箭仟狗综纲劣煎叮岩冷缮恤史殉唇畦久值文第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用五、知道逻辑2、群体知道逻辑 d)一致性 1)命题A称为是一致的,若A不是K(m)可证的 2)一组命题A1,A2,An称为是一致的,当且仅当A1A2 . An是一致的。 3)命题的一个无限集称为是一致的,当且仅当它的每个有限子集均是一致的。 4)命题集S称为最大一致的,若S是一致的,且对所有的ALm()-S,AS均不是一致的。 崩够券涧棕蛔签磅贵垛痢狸碰贬儿矽和莽侣修曝旱杂掏屯胆报眨仗外摧婴第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用五、知道逻辑2、群体知道逻辑 d)一致性 注:(1)每个一致的命题可以扩充成为最大一致的命题集。 (2)若S是一个最大一致的命题集,则对所有的命题A、B有: 或者AS,或者AS; ABS,当且仅当AS且BS; 若AS且(AB)S,则BS; 若A恒真,则AS。依将鳃馏惭叼尾摇氛这嗅园潘耽痊捧说咀岗译焙币炸绘清恼坛拱涟飘腥瑚第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用五、知道逻辑2、群体知道逻辑 e)健康性和完备性 1)健康性 若任何在一群体知道逻辑的公理系统中可证的命题在每个可能世界中皆成立,则称该群体知道逻辑的公理系统是健康的。 2)完备性 若每个在所有可能世界中成立的命题均是在系统中可证的,则称该系统是完备的。 注:K(m)是一个健康且完备的系统。椎队屑凶税视誓固菲栗赛赶撞丹变棕矮陪枣越曾矣赔磨摘秩桌肌边袍甸劈第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用五、知道逻辑2、群体知道逻辑 f)K(m)扩充 1)增加公理 J3:KiAA (知识公理)(若有人知道A为真,则A为真,即群体中任何人均无错误的知识) J4:KiAKiKiA(正内省公理)(每个人均知道他知道什么) J5:KiAKiKi A(负内省公理)(每个人均知道他不知道什么) 注:若将Ki比作,J3可作为公理T,J4可作为公理S4, J5可作为公理S5,从而解释为知道是有意义的。筏脑岩攀芦纵催旨霜殆握赊弦使方懂栗拘饵盖朴蒸扣用谈栅守港莉途押拱第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用五、知道逻辑2、群体知道逻辑 f)K(m)扩充 2)引进新算子 算子J JAK1AK2A. KmA (J表示人所共知的知识) 算子C CAJAJJAJJJA (C表示无限层内省(自己知道自己知道)和无限层外察(每个人知道别人知道)的知识,即,C是常识模态词)诊坏继典俞镜孺槐山迄经马隋辰隔平魂赵踞卜炊谍羹斑亲嗽探许舅抛绢谩第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用五、知道逻辑2、群体知道逻辑 f)K(m)扩充 2)引进新算子注:(1)显然,算子C表达的内容比算子J表达的要多得多,但日常生活中又好像若每个人均知道某件事,则每个人均知道别人也知道这件事,很难区分J和C,但可举一反例,如秘密组织。揣诊襄喧箍协滋青躺梯福渠汁孵滴咏彤爷膊荫五慌绵洋荫淫答溪鸣疫砒虚第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用五、知道逻辑2、群体知道逻辑 f)K(m)扩充 2)引进新算子注:(2)算子C和J的语义可表达如下: |=JA成立,当且仅当对所有使得Ri成立的(其中1im,任意),皆有|=A成立。 |=CA成立,当且仅当对所有从可到达的世界有,|=A成立。烈匡人纫乞游统慕季奔腮孵捐虱即碱找怔糊骨豪糠战净琳痉友缎叫民贤噶第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用五、知道逻辑2、群体知道逻辑 f)K(m)扩充 3)关于J和C的公理(常识型附加公理) J6:JpK1pK2p . Kmp J7:Cpp J8:CpCJp J9:CpC(pq)Cq J10:(pJq)(pCq)痞瞥赫本槽焙弃咋科惕学杖克辱呐砷丹唆伪膀纽泛卖张粕履嗡南淡徐展朽第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用五、知道逻辑2、群体知道逻辑 f)K(m)扩充 3)关于J和C的公理(常识型附加公理)注:(1)J7表明,凡常识都是事实 (2)J7和J8合在一起给出Cp的递归定义; (3)J9表示常识推理在逻辑上是全知的; (4)J10表明,必然成为J型常识的事实也必然成为C型常识。赘笛害即撅龟舆障姆辅怨搬牟乌镜蘸盒淮腿葱垂傍稿人房尖插湾核皑坚爷第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用五、知道逻辑2、群体知道逻辑 f)K(m)扩充 4)关于C的推理规则(常识型附加规则) Q3:若p是可证的,则Cp也是可证的。注:对于上述知道逻辑。每个人只能利用自己的知识来进行推理,但实际上,每个人都不会拥有全部知识,需要合作。这种由不完全知识组成的相对完全的知识称为潜在的知识,可用算子I表示潜在的知识。喳排垮通淬诌恭码墙坤远敢握旨坤飞礼肮傅蔡嵌坡唯贸壮宁侯灌汀娠纤施第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用五、知道逻辑2、群体知道逻辑 f)K(m)扩充 5)算子I的语义刻划 设M=(W,R1,R2,Rm,V)是一个Kripke群体模型,则|=IA成立,当且仅当对所有的公共世界,皆有|=A成立(其中,A是一个命题)。 注:在这里,称为是(相对于的)一个公共世界,当且仅当对所有i(1im), Ri皆成立。即,在所有个体都认为是可能的现实世界的地方,并且只有在这种地方,成立的命题才是潜在的知识。难号背锹果箩蜀梧茶嫉懦蹲攘某欠谁莆迅歇惦犬谓驹磅国危凳平结毋伺牺第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用五、知道逻辑2、群体知道逻辑 f)K(m)扩充 6)关于I的公理和规则(集成型知识公理和规则) (1)公理 J11:KipIp i=1,m (2)规则 Q4:IpI(pq)Iq 豢窗靶尹妊桥馏辅价周棉篆赵原绞炊块哎榴渔措儡寻彝箩咖连能近固蠕杀第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用六、信念逻辑1、信念含义解释 a)表示尚未被完全证实的知道。 注:在这种含义下,只有已经被证实(变为知道)的信念和尚未被证实的信念之分,而不存在可能被否证的信念。 b)表示不一定正确的知道。 注:在这种含义下,信念既可被证实,也可被否证。 缆斑冶赏偷裴沽婚松兽菠细耗怂壬蹬斗赶党燃宾降秋傀颂喜饼疵畦牢虏壹第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用六、信念逻辑1、信念含义解释 c)表示对已有证据积累的一种函数,体现对某个命题的相信程度。 注:此时,从数学上说,信念就是一种概率(或其它表示不精确程度的数学量),它在证据积累过程中可以变化,常用于专家系统的不精确推理。钞泞措赏心券讨嗜走委戍奖叼漳檄旭播凳寄吁呀具葵数待瞄棱僧新雍腋酸第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用六、信念逻辑2、模态算子 B(相信) W(可以接受) WA=BA K(知道) Z(不排除) ZA= KA定义定义歧侈恋篡序悸青习幅红丧谅例声觅弊冗窜尧鹏荫赵净骗其橱罪毙兼禾遣档第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用六、信念逻辑3、凡人信念逻辑 公理: KABA BAWA WAZA BABBA WAWWA BABKA (理智人公理) ZABA (鲁莽人信念公理,不排除A就去相信A) ZAWA (谨慎人信念公理,不排除A就可接受A) 焰亡瓢及滥针呆撰佬块默孺融浆唯监体誊呸瞧励呢崭狼苇报忻蹄怠基巡揽第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用六、信念逻辑4、超人信念逻辑 B(AC)(BABC)5、上帝信念逻辑 BAKA (凡相信者必真)埠趁堵情渣咀娶忻个聚狈伊阿糜据贫牟呸罚骨苹讹艾超拂眺嘘活厘蒋谣篮第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用六、信念逻辑6、Pap信念逻辑系统 a)公理 (1)BiABi(AC)BiC (每个人都是超人) (2)BiABiA (每个人都不会发生逻辑上的矛盾) (3)Bi(AC) BiA (4)Bi(AC) BiC 垃踩茂凡墅茶长锦阅绞暂梨糟核拴菩音栗侧丧陀厚桃兔朗雇帖介炭年渔米第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用六、信念逻辑6、Pap信念逻辑系统 b)推理规则 (1)若对所有个体i,均有BiABiC成立,则亦有AC成立(所有人都相信的命题就是真命题,每个人都有一票否决权)。 (2)不存在这样的个体i,使得对任何命题A,只要BiA成立,就有A成立(排除了上帝的存在,(BiAA)勒映壬迅突膛空泵拄狈舀霄呸峰恶洱编怜烧吸驱蜕果慨划选谈汤吸墅公丑第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用六、信念逻辑7、KL逻辑 a)算子 m个知道算子:K1,K2,Km m个信念算子:B1,B2,Bm J,C,L,Q JAK1AK2A.KmA CAJAJJAJJJA LAB1AB2A.BmA QALALLALLLA垫俱大推掸婶矫手氦痢碑魂肢苦与臀域恍揉鄙郎榆阮啄哗顺拴瑶轮威氓睦第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用六、信念逻辑7、KL逻辑 b)公理 (1) 命题演算的全部公理 (2) 由|A和|(AB)可得|B (3) Ki(AB) (KiAKiB) (超人知道公理,逻辑全知) (4) KiAA (圣人知道逻辑) (5) KiAKiKiA (6) C(AB)(CACB) (公共常识全知) (7) CAKiA桨姿潮仲啊勤狠懂逮快从须凹堡栅彰杂妓岩棘川粪亩挽蕾酉殊鸽境陵带墅第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用六、信念逻辑7、KL逻辑 b)公理 (8) CAKiCA (对于常识,每个人均知道) (9) C(AJA)(ACA) (10) 由|A,可得|CA (11) Bi(AB) (BiABiB) (超人信念公理,逻辑全信) (12) Bifalse (相信的命题至少不能证明其错) (13) Q(AB)(QAQB) (公共常识全信) (14) QALA (常识信念也是每个人的信念)驳隋戒钾矢耍江浑品衫妒说佳耻灿安蓝燃拧锣换腥俺恋赞阁伎熊奶李舌漠第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用六、信念逻辑7、KL逻辑 b)公理 (15) QALQA (对常识型信念,每个人均相信) (16) Q(ALA)(LAQA) (17) KiABiA (知道A者一定相信A) (18) BiAKiBiA (相信A者一定知道自己相信A) (19) CAQA (常识一定是常识型信念)剐全拧拐晰斌群脯搀倘棘萤咙唯禽糙吾缎抢缩擂戳圾案杭午知协裳苏贡汁第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用六、信念逻辑7、KL逻辑 c)语义模型 M=(W,R1,R2,Rm,R1,R2,R m,V),其中: 1)每个Ri均是W上的等价关系 2)各个Ri具有如下性质: (1)Ri是序列的(连续的) (2)由Ri可推出Ri (3)对于任意的,若 Ri及Ri均成立,则 Ri也成立。 陨带炽沛割斑耙行盅薪咏兽谣缨诗史她榴楔对微怒嘲穿瘫蠕睫官嗡播烟畅第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用六、信念逻辑7、KL逻辑 d)性质 Bi(BiAA) (每个人相信,只要他相信A,则A就一定是真命题) (主观主义者的信念逻辑)堕郑锄梭净朋斡柒贞疚涅婴宛陈蔼碳仗挚珐拌娩晶绰逊幽触促频峪环依庸第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用六、信念逻辑8、逻辑全知与逻辑全信 a)概念 由KA和K(AB)可知有KB成立,再加上普通命题逻辑的推理规则(由AB及BC得 AC),就可推出所有被已有知识蕴含的知识。这就是逻辑全知。 由BA和B(AC)可知有BC成立,再加上普通命题逻辑的推理规则(由AB及BC得 AC),就可推出所有被已有信念蕴含的信念。这就是逻辑全信。注:建立信念逻辑系统是要尽力避免逻辑全知(信)聘战品娘钨诅穷耘梆萝总防隅凉虚盈血尿酪兽一貉汝搔磅福曳货操理戏薄第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用六、信念逻辑8、逻辑全知与逻辑全信 b)摆脱逻辑全知的方法途经 1)将显式信念和隐式信念区分开来 显式信念是与推理者相关的信念,而隐式信念虽然可能被推理者所持有,但却和推理者目前考虑的问题无关。注:为了区分显式信念和隐式信念,我们可引入情景概念显式信念在其中成立的环境。在一个情景中,一个命题可真可假,或既真又假,或不知真假。若一个情景中不包含矛盾,且每个命题在其中的真假值已知,则称之为完善的情景,即可能世界。甜治讥治讽吴苦瞳茨滚乞毁汹蓄瘩役汉需旬望斟薛米门揖倘撰溜屏抒巩靠第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用六、信念逻辑8、逻辑全知与逻辑全信 b)摆脱逻辑全知的方法途经 2)逻辑方式 避免在系统中出现逻辑闭包(即通过无穷推理求出全体可能信念的集合)。 避免逻辑闭包的方法可有语义和语法方法。 (1)语义方法 通常设计某些不可能世界或非标准世界,使一些本来为真的命题在其中不为真,或本来不为真的命题到其中成为真的了。债镰尹稽杉钻岸炊慈针凳僧悬竿陇屉狙蠢得孽辨香帝锌故穷纷废募减戊秘第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用六、信念逻辑8、逻辑全知与逻辑全信 b)摆脱逻辑全知的方法途经 2)逻辑方式 (2)语法方法 通常是先给出推理者的一个初始信念集,然后给出一组不完备的推理规则,使推理者只能得到范围有限的结论,如,Konolige的演绎信念系统。 注:这种方法的缺点是初始信念集的选择往往是人为的、不自然的,若用来描述计算机或机器人这类人工制造的信念推理系统也许还可以,而要描述人的信念活动就很困难了。遣滦措崇豫吻束俺扼梗留汝节旭槽刀共碟督甘攫援需沿华汪铺夺轻缎侄思第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用六、信念逻辑8、逻辑全知与逻辑全信 b)摆脱逻辑全知的方法途经 3)心理学方式 把某些心理学概念引进逻辑中,如,“意识到”。人必须先意识到某个事物或概念的存在,然后才能产生对那个事物或概念的信念,从而把信念和意识区分开来。由此,意识逻辑就成了信念逻辑之上的一层元逻辑,它控制着信念逻辑的推理。 杂吠夕瘪薯守资肿畏弃痈碎笔就点卢钝够敲隙掺告现太特湾叔肋仪谅酥帖第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用七、时序逻辑1、基本时序逻辑 a)在模态逻辑中,将模型M=(W,R,V)中的R解释为时间先后关系,且R是一个自反且传递的关系。 b)“”解释为永远算子,“”解释为将会算子。可有AA (若永远,则现在.) 注:1)时序逻辑不具备性质: pp,即,S5不能作为时序逻辑。这是因为,时序逻辑不具备欧几里德性质:若R且R,则可推出R。原因是时间关系不可逆转。如:死亡是出生的将来世界,上学也是出生的将来世界,则上学是死亡的将来世界,显然,这是谬误。皆谅贯啄铝育谤滞凸驮昼律刚敛丈畔豆栏盗婴壤痪讶肾聋壬斜渍楚掂红垄第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用七、时序逻辑1、基本时序逻辑 注:2)时序逻辑在分析和证明一个计算机程序的语义时非常有用,如,部分正确性、完全正确性、两事件间的联系。星需佩狡俱哲炉汝匝忘熏省喉动傅响夜纳润裤纱铂孤戴柯捂参丰晚娩票矾第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用七、时序逻辑2、扩充时序逻辑 a)引入新的时序算子:“下个状态”算子(表示当前状态的下一个状态)和“直到”算子(pq表示q总有一天要成立,并且在q成立之前,p一直成立)。 b)引入新的时序算子:A(对从当前状态出发的所有路径)、E(存在从当前状态出发的某条路径)、F(在指定路径上的将来某个状态)、G(在指定路径上的将来所有状态)、N(在指定路径上的下一个状态)、U(在指定路径上直到某命题成立为止)、P(表示对某个过去世界)和H(表示对所有的过去世界)。援未杀筏丹节苍析烁勿楼团诧穗窟端磅珐趋坏蜂娶底炔必敖缆蓑磕奠门释第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用七、时序逻辑2、扩充时序逻辑 注:1)时序逻辑可分为线性时序逻辑和分枝时序逻辑。两种时序逻辑的公式是一样的,关键在于语义有所区别:线性时序逻辑以路径作为命题的论断对象,而分枝时序逻辑以状态作为命题的论断对象,这两种语义的不同表现在下列事实上: 在线性时序逻辑中有:pp (p称为有时p) 但在分枝时序逻辑中无:pp 2)扩充时序逻辑既包含线性时序逻辑,也包含分枝时序逻辑。 郁劝洁缄钟淑铃瓜赶碗绅鞭防说贤碗箔蹈炙衙桓襟塌吝递驱沈绚寅症砖跋第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用七、时序逻辑2、扩充时序逻辑 注:3) 可有如下公理和规则: (1) AHFA AGPA (2) 若A是公理,则GA、HA是公理 (3) 若A可证,则GA可证 (4) 若A可证,则HA可证 (5) 若AB可证,则GAGB可证 (6) 若AB可证,则HAHB可证 畜私三蔫誓钠寞指裕抄隅党缉竣妙坎桂岔含帛达焦旧拟奏代膀颧拖把切伙第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用七、时序逻辑2、扩充时序逻辑 注:3) 可有如下公理和规则: (7) PGAA(若对某个过去时刻来说,将来恒有A成立,则现在A成立) (8) FHAA(若对某个将来时刻来说,过去恒有A成立,则现在A成立) 4)XYZ-e是一个线性时序逻辑语言,Clarke的CTL则是一个分枝时序逻辑语言。 捉多钞祖主哎荔羊柒辫淌赌埂抽丛欺葡护获瑞屠砖抑署虱蒸卵翟堕俩驳是第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用八、基于区间的时间推理1、基本思想 以时间区间作为表示时间的基本单位。九明褥倾巢蹦搂倪椒逮冗顶惧友姥闲手吞冲柜欧谢络畅归晚脆锈故企渊恢第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用八、基于区间的时间推理2、基本定义 设A,B是时间区间,t(A)和t(B)分别表示A和B的左端,t(A)+和t(B)+分别表示A和B的右端,定义: a)A在B之前(以AA表示),具体特征为t(A)+ t(B); b)A等于B(以A=B或B=A表示),具体特征为t(A) = t(B)且 t(A)+=t(B)+; c)A遇上B(以A m B或B mi A表示),具体特征为 t(A)+= t(B); d)A交叉B(以A o B或B oi A表示),具体特征为t(A) t(B)t(A)+t(B)+;酪腆溅芹案旅殷期申很宵傀韦馆仿仗斩愈钡纬番旭甘崖淫寒羞仙点醇样凛第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用八、基于区间的时间推理2、基本定义 设A,B是时间区间,t(A)和t(B)分别表示A和B的左端,t(A)+和t(B)+分别表示A和B的右端,定义: e)A在B之中(以A d B或B di A表示),具体特征为t(B) t(A)t(A)+=t(B)+; f)A开始B(以A b B或B bi A表示),具体特征为t(A) = t(B) t(A)+t(B)+; g)A结束B(以A e B或B ei A表示),具体特征为 t(B) t(A) t(A)+= t(B); 件淋棕魄哀赁对暇蛤畏措珊了欣程靖税哦安靖攫寸腑鹤侦锄烦乓蒋吩卸颊第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用八、基于区间的时间推理2、基本定义 注:1)时间区间之间的关系,不是可以直接获得,往往需要通过知识(常识)才能提炼出来。 2)关系可以组合形成新的关系。为了直观,常常把关系画成有向图的形式,对于时间区间之间未确定的关系可通过逐步建立时间区间网络并在网络上进行推理(传播时间约束关系)获得。坛住霸饥难夜术步贩兰厩参叁玉组廉恼雹豆颇魔赁交沂呆局校芳迪竣仕扳第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用八、基于区间的时间推理3、时间约束关系传播算法 a)给定一组事件(时间区间)Ai,(1in) b)给定其中某些时间区间对(Ai,Aj)之间的(非重复)约束关系集N(i,j), ij c)令S和T为空集,=0 d)将所有的对偶,1ijn,置入S e)从S中取出一个对偶并将它置入T中,对调用计算两个节点间的累加约束算法。若调用的结果使N(i,j)的内容改变,则令=1 f)若S非空,则转e)冲瞳窑而剩辖智道凳为麦枷跨舆诱苔辩勤喷千腿噪刽戒饯佣索勾婪瞳迪搏第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用八、基于区间的时间推理3、时间约束关系传播算法 g)若=0,则算法结束,停止结束 h)将T的内容倒入S中,置T为空,置为0,转e)煎旱延吓裔荆忠合辣硷宋粳拿妇巴愿娟醚色屿何尽拼贵锥他反令粳掏酵灸第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用八、基于区间的时间推理4、计算两个节点间的累加约束算法 a)对每个满足如下条件的k,调用“计算合成约束”算法,计算集合N(min(i,j),k,max(i,j): 1)N(i,k)和N(k,j)均非空;或 2)N(i,k)和N(j,k)均非空;或 3)N(k,i)和N(k,j)均非空 b)若a)中的k不存在,则算法结束,返回 c)不妨假设ij,构造N(i,j)= d)若N(i,j)为空,则说明出现约束矛盾,给出错误信息,停止执行算法。潍什辨壹夹遣绰萍悼缄销嘲睫敌狼麻础固匹迅科蔬雀挞迫健敦琼毕哑锹吁第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用八、基于区间的时间推理4、计算两个节点间的累加约束算法 e)若原来的N(i,j)为空,则令新的N(i,j)的内容为N(i,j),结束算法,返回 f)令N(i,j):=N(i,j)N(i,j) g)若N(i,j)为空,则说明出现约束矛盾,给出错误信息,停止执行算法。 h)结束算法,返回表搏氮桐魔磕磺弄窄正蔡纫廊力干剩拈身焚犹烁抹反嫩宙峦丽凶酚蹄肃缨第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用八、基于区间的时间推理5、计算合成约束算法 a)设任务为求N(i,k,j)。先置N(i,k,j)为空集,通过必要时,用逆关系代替原关系的方法,把两个输入集合改成N(i,k)和N(k,j)的形式 b)若集合N(i,k)非空,则转c);否则,通过必要时用逆关系代替原关系的方法把输出集N(i,k,j)改为N(min(i,j),k,max(i,j)的形式,结束算法,返回 c)从N(i,k)中取出一个约束(时间区间关系)R d)对N(k,j)中的每个约束R,构造合成约束RR,并将它们置入N(i,k,j)中 e)转b) #算法完烂乙襄岳雇碱钟匠造赐植荣榨容硬稀旧暑烬讯鞋跟叁绒秆象魄捶位擎椿力第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用八、基于区间的时间推理5、计算合成约束算法 注:1)在时间区间网络中的每一条弧上可能标注有多个关系,所谓约束累加就是通过多方约束删去那些不合适的关系,因此,这也是一个使时间关系逐步精确化的过程。 2)交叉为空,表明约束出现矛盾。 3)任何时间关系均有一个逆关系。 4)Allen假定每个事件只能位于一个时间区间,而不能位于多个时间区间。为了描述这种情况,需要对Allen的描述手段加以扩充。私卵友吟煮署诌柞利僚亏聋饺拨廓从税航弄厢鼠遭胃华卉籍薛碎椅匪码鸟第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用八、基于区间的时间推理6、时间区间多次出现时的约束计算算法 对事件增加一元关系f:令A为时间区间所代表的事件,则fA表示A可多次出现。 对“计算两个节点间的累加约束”算法作如下修改: c)构造N(i,j)=N(i,k,j) f)令N(i,j):=N(i,j) N(i,j) 其中,对任意的关系集、,定义为: =x|x且和中的某个元素不矛盾; x 且和中的某个元素不矛盾 潍峨酷揽风托版辅碟伍宵誊孟力钥柜睛蛰澄藤羹吱奖苇邯枷版搽烙减孤礼第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第二节 模态逻辑及其应用八、基于区间的时间推理6、时间区间多次出现时的约束计算算法 对任意的关系组k, kk定义为: kk=x|xi且与每个j的某个元素不矛盾,ij,1i,jn 注:1)对时间区间可进行推广,如可推广为半区间:只有起点或终点的时间区间; 2)在实际应用中,待解决问题的初始知识可能是不完整的,给出的可能不是Allen的13种关系之一,而是它的某个子集中诸元素的析取;另一方面,所求的结果可能也不需非常精确,它也是Allen关系的某种析取。此时,可引进时间区间的相邻关系。 捏碟凶宗贡旗佰冀徒享板衍桩拐俄掘谦扑表解催厚饭详埂儿谱央毕洲缴蒙第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第三节 非单调逻辑一、产生原因 1、人工智能研究需要涉及常识及其推理。 2、常识具有不确定性,一个常识可能是一种尚无理论依据或者缺乏充分验证的经验,往往对环境有极强的依赖性,可能有众多的例外。 3、常识的不确定性,决定了常识推理的所谓非单调性,即依据常识进行通常的逻辑推理,但保留对常识的不确定性及环境的变迁造成的推理失误的修改权。 嗅铬拆瑚蜘死谬洛舅桨汕弧洪烙亦结讽毙濒膛头滞友鸡倍霍辰锨看杉铃布第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第三节 非单调逻辑一、产生原因 4、要使机器具有智能,就应当使它具有常识推理的能力,具有依据“不完全的信息”、“不可靠的经验”进行推理和预测的能力。 5、为了形式化地表述常识,并在常识间进行有效的形式推理,70年代,人们提出了非单调逻辑(non-monotonic logic)汀颠怔宋往燎令寸侣蜜克囚臂达喝症多腕据椽澎动夷终臭穴顾约栏煽佯箍第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件为何需要非单调推理缺省值改变 发现规则的异常情形 发现与已形成的结论矛盾的证据 输入数据不正确 输入数据随时间改变 无法表示不确定、不精确假设或模糊知识灼硅撤宽蛊沧皇稗收蚊求襄问卢半恒秋端荡吗蘑扬靠作裹屎绸同裳综瞎兴第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第三节 非单调逻辑二、单调与非单调1、单调性 设FS是一逻辑系统,称FS是单调的,如果对于FS的任意公式集合1,2,12蕴含Th(1) Th(2) ,这里Th()表示公式集合A|FSA,即的演绎结果的集合。注:1)传统逻辑系统均是单调的 2)单调性可理解为:由已知事实推出的逻辑结论,决不会在已知事实增加时反而丧失。得疤恢乃出抑冰绞廖婴逮蠕偿雄疙卜改獭家锑碌凡庄册对讣胯江位径汪够第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第三节 非单调逻辑二、单调与非单调2、非单调性 设FS是一逻辑系统,称FS是非单调的,如果存在公式集合1,2,12但Th(1)Th(2) 。眼距估调洗泅猩贴脂锣氰沂敝氦锻宰遵侥掀骂兰陌飞伎粕痕琳栓西蛇畅尉第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第三节 非单调逻辑三、非单调逻辑与非单调推理1、实现非单调推理的基本方法 a)扩充经典逻辑 在经典逻辑的框架内增加几个公理(或元公理),以此引导非单调推理取得预想的结果。 b)定义特定的非单调逻辑弧增沉抵受航衡黑壶缅讣瞪父润侮涂懦硬那复会蛛寄学盛喇趣楚蚁损凸恤第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第三节 非单调逻辑三、非单调逻辑与非单调推理2、常见的非单调逻辑与非单调推理方法 a)封闭世界假说 b)缺省推理逻辑系统(Reiter) c)非单调逻辑(McDermot和Doyle) d)限定推理逻辑系统(McCarthy) e)自认识逻辑(Moore)f)Answer Set Programming喻膝楔答坦烈铰碉涝哥举滔呆舰棠拢缨阅汝鹤宰亮戎氏抉脸宝幕富征桐道第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第三节 非单调逻辑三、非单调逻辑与非单调推理3、封闭世界假说(Close World Assumption,CWA) 当系统推不出A时,就认为A成功。注:1)最早的PROLOG版本就已经有了“封闭世界假说”;2)当系统的知识库扩充时,可能推出A,那时, A就不再为系统所接受;3)PLANNER系统更进一步,其中设有运算THNOT。THNOT(A)表示“试图证明A,若不成功,则THNOT(A)真”。不仅如此,为了便于在运行中更新系统,PLANNER还设有前提表和删除表,可随时删除那些系统已经导出而又在系统更改后不再成立的事实。掀驶羚管惠央睹佑癸神只钻袍毒牙秧联拼阅槽入云稿答壳琐粱啃李皖趋消第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第三节 非单调逻辑三、非单调逻辑与非单调推理3、封闭世界假说(CWA)注:4)这里必须保证“A是否可证”是可判定的,而这并不总是可以办到的。息涧嗅神希汞控软目陨渗景胎烯啥扁佐瘸骏变项等钡淀给脊懊简刹借佑冈第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第三节 非单调逻辑三、非单调逻辑与非单调推理4、缺省逻辑(Default Logic,DL) a)基本思想 当知识库不够丰富时,需要“想当然”地对知识库进行扩充,扩充的内容就是缺省知识。 注:1)缺省知识并非绝对可靠,只是在目前看来,不和知识库的其它部分发生矛盾,所推出的不能算是事实,只是对现实世界的一种猜测。 2)在此,所谓“S在缺省条件下成立”是指“当且仅当没有事实证明S不成立时S是成立的”。籽妒着撂淮薯销聪札毅躁塑儒懦毯逊茸佬测徐民蛛绦测拆仰恃傻岩泄叶汀第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第三节 非单调逻辑三、非单调逻辑与非单调推理4、缺省逻辑(Default Logic,DL) b)公式与命题构成 1)一阶谓词演算的公式是DL的公式 2)缺省命题形式为: (X): M1(X),M2(X),Mn(X)W(X) 其中X是xi构成的参数向量,(X)是命题的前提,W(X)是命题的结论,M是缺省算子, M1(X),M2(X),Mn(X)是缺省要求(缺省条件)注:(1)缺省命题可读为:若无信息表明1(X),2(X),n(X)中有任何一项不成立(或与现有知识矛盾),则从前提(X)可推出结论W(X)。 咳复袍炼锭抚絮垣蜀凋流譬执室诱蘸贷兰简妒磊唾颊历茹娶臭翘勋嚎嘱劫第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第三节 非单调逻辑三、非单调逻辑与非单调推理4、缺省逻辑(Default Logic,DL) b)公式与命题构成注:(2)缺省命题形式也可看作为缺省推理规则形式。 (3)M常读作“可能”,Mi(X) 表示就现有知识而言, i(X) 可能成立,即i(X) 尚未出现(缺省)。 (4)若缺省命题(缺省推理规则)中不含有自由变元,即,Mi(i=1,.,.n),W均为命题,则称此缺省命题(缺省推理规则)为闭缺省命题(闭缺省推理规则) 。爹逐蜜须蒜马尔掀锈员嘱返窥脸蕊孪函侣钦慢禹寂黎惑捡暮装傻捂乱汾否第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第三节 非单调逻辑三、非单调逻辑与非单调推理4、缺省逻辑(Default Logic,DL) b)公式与命题构成注:(5)一个缺省理论由两个部分组成:缺省命题(缺省推理规则)D和一个由已知的或约定的事实构成的公式集W形式。 (6)缺省理论是非单调的。 (7)非单调推理的一个重要特点就是当新的事实(或公理)增加时,原先已有的结论可以被推翻。 (8)对缺省理论的扩充可分为对W和D的扩充。果泞蒙戏锅划请宪手溢汲末姆锐殆谢商端负眶埠宝酉甥疹亿蜕牛滤母样导第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第三节 非单调逻辑三、非单调逻辑与非单调推理5、限定逻辑与限定推理 a)基本出发点 在常识推理中,人们常常把“已发现的、具有某些性质的客体,看作是具有该性质的全部客体”,并在推理中使用这个“偏见”,直到具有该性质的其它客体被发现,再修改这一看法(只是在新情况下用一种新的形式去坚持上述这种“一叶障目”的看法)。逮默闪榔俘衰妒福溶院吵懦窄卒苇铂电挣中劫捞凌拖遥和沙膀给驴沸具搔第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第三节 非单调逻辑三、非单调逻辑与非单调推理5、限定逻辑与限定推理 b)基本原则 当且仅当没有事实证明S在更大的范围内成立时,S只在指定的范围内成立。c)核心思想 使用“Occam剃刀”原理:若一个句子叙述一个命题,则它叙述的仅仅是这个命题,一点也不能扩张和延伸,任何多余的东西都要用这把“Occam剃刀”剃掉。 注:(1)McCarthy使用的Occam剃刀称为极小模型使用限定。罩匀慕勃痪亿侮律蝴募民彻泞凛硷规涯寻鞘您烙糟字多诣蛊独僻螺酉胰贤第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第三节 非单调逻辑三、非单调逻辑与非单调推理5、限定逻辑与限定推理 c)核心思想注:(2)限定可分为论域限定、谓词限定、公式限定和平衡限定。箔纹占杨琳寅峙葫诣卧丘菩虚所皮场蜕沈谚妥郧众纶穿窥色筛佣坪潜泅浩第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第三节 非单调逻辑三、非单调逻辑与非单调推理5、限定逻辑与限定推理 d)应用 (1)通信协议描述 (2)用作一种“猜想”、“预测”的工具 (3)用来表示某些需要灵活掌握的策略,如象棋策略。 (4)当事件的“可能性”、“或然性”的数值描述不可能时,可用限定来代替事件不确定性的描述。买敢推穿安杀欲背授瀑奎疚魄颊氛注嫡蒂孔烬言乘赦截古凝竭跋腻掷痴运第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第三节 非单调逻辑三、非单调逻辑与非单调推理6、自认识逻辑 基本思想是利用信念逻辑来研究非单调推理。 “如果我知道S,且我不知道有其它任何事实与S矛盾,则S是成立的”。 引进两个算子L和M。MA可理解为:命题A与推理者所有的全部当前知识不矛盾,就表示可接受A;LA表示相信A。 MA=LA注:可引入另一个模态词O,以表达“关于某个方面,某个事实是推理者所知道的仅有的(所有的)情况”这一类陈述。OA表示推理者信念中仅有A。定义岗笨猩楔鹤勿遇荫蹭诫薄饰戚尺取踊溶孩剩想粕惕盈蓉耀好宫莱赵伪疆潞第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件ASPAn ASP program (late 1980s) is a collection of rules of the form:A0 or or Al B1, , Bm, not C1, , not Cn.where Ais, Bjs and Cks are literals.Michael GelfondJack MinkerVladimir LifschitzRay Reiter宋构署伐找岗祸瞧毙舷脱蚕甫铂嘿氯炙睬樟眨斩菱噪预帜碉军虐铃壁围侠第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件ASPIts syntax uses the intuitive If-then form.It is non-monotonic.Can express defaults and their exceptions.Can represent and reason with incomplete information.Can express and answer problem solving queries.Large body of building block results.Various implementations: Smodels, DLV, Prolog.Many applications built using it.Learning systems: Progol.Its initial paper among the top 5 AI source documents in terms of citeseer citation.搽曙巡骡崎菩陈巧丹扼蜜猖怎执伎柜俩色掸逢陨贺坤敞蒂骆增宜剔赠腹扛第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件Normal programA normal program in ASP is a collection of rules of the form: A B1, , Bm, not C1, , not Cn.where A, Bjs and Cks are function-free atoms.If the body is empty, we write A .Or simply A. 你猖屯户涯芝就求恤蹭已找贡课倒妻病测吱具计佑枕掣播纯愤俊斡卧稠载第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件SemanticsA function-free program can be grounded (called propositionalization in textbook)p(X) q(X), not s(X) . % Function-freep(X) q(f(X), not s(X). % Not function-free薪桌吏枣牌捞惹乔钞廓捣履颧帐柬窍陆洼彦巡的嘘瑚苛致六宽林掩屠胀冷第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件SemanticsSuppose we have constants a,b,c in our program, the rule p(X) q(X), not s(X).is a compact representation of three ground rules p(a) q(a), not s(a). p(b) q(b), not s(b). p(c) q(c), not s(c).婿捉所悄欢骤玲淬速名据崔爷械孜灌蜘致驭盛围砂裔诞茫衫资奖欣掠得筷第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件SemanticsInformally, a stable model M of a ground program P is a set of ground atoms such thatEvery rule is satisfied, i.e., for any rule in P A B1, , Bm, not C1, , not Cn. if Bjs are satisfied (Bjs are in M) and Cjs are also satisfied (not Cj is satisfied if Cj is not in M), then A is in M.Every A MMcanbe derivedfromarulebyanon-circularreasoning.谆辛惕宪滞芳谤斜斑帖吁宋碗曝谦悠笋墩异铃骸啃害恶偶磐扇冤瓤区赋憋第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件Examples P1 = a a. M = a is not a stable model but M= is. P2 = a not b. a is the only stable model P3 = a not a. It has no stable model 请券畏淮哈腆牟羔舍苯乔秃炸衷感摩终酝垄臣捉馆踏侨傣家电共崩糕荤板第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件Examples P4 = a not b.; b not a. Two stable models: a and b.棉喳虹冠如己丢砌糜粱庚源煎垃吓案夹鼎篡堵酸耘咙苞暇疯讳判豌试极械第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件Examples P4 = a not b.; b not a. Two stable models: a and b.P5 = a not b.; b not a.; a not a. a is the only stable model. 庭洲障象咯妊惭慰掏轿犯重宗饺众弊毅善奥凹啪看储恋湛佯慰跋趁思睹蚤第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件Does tweety fly?fly(X) bird(X), not ab(X). ab(X) penguin(X). bird(X) penguin(X). bird(tweety).We conclude fly(tweety).But if we addpenguin(tweety).We can no longer conclude fly(tweety) and conclude fly(tweety), by virtue of CWA.玻闪颐悸楼烛隅蔓釜幂尾杏睡驾算蛋蕾氮惊秸拔句警攘糟肠雍最釜输策疏第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件Constraints for disallowing The head of a rule may be empty: B1, , Bm, not C1, , not Cn.It says no stable model may contain all Bjs and none of Cjs. 造潞让仟西杉些酚披忘颧滑然庸淋昧汹险肆鸵逮见抒爆宅帆遭雕帕士美尸第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件3-colorabilityWhether 3 colors, say red, blue, and yellow, are sufficient to color a map A map is represented by a graph, with facts about nodes and arc as given, e.g,vertex(a).vertex(b).arc(a,b). 篮么悔页复臆尉悯硅娇屡莲蛮崩饲遍奖拍癸丫糊鱼蜒车议冲拙胜衙土蒲捻第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件3-colorabilityEvery vertex must be colored with exactly one color: color(V,r) vertex(V), not color(V,b), not color(V,y). color(V,b) vertex(V), not color(V,r), not color(V,y). color(V,y) vertex(V), not color(V,b), not color(V,r).No adjacent vertices may be colored with the same color: vertex(V), vertex(U), arc(V,U),col(C ), color(V,C), color(U,C).Of course, we need to say what colors are: col(r). col(b). col(y). 订回为势闸蔡匿机翌脉季稀眯膨澄顽搂沛赶灵翅旋捍怒畴苗辟民蓟彻旗际第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件3-colorabilityA different encoding: color(V,C) node(V), col(C), not otherColor(V,C). otherColor(V,C) node(V), col(C), not color(V,C). node(V), col(C1), col(C2), color(V,C1), color(V,C2), C1 C2. node(V), col(C), not color(V,C). node(V), node(U), V U, arc(V,U), col(C ), color(V,C), color(U,C).壕浊酚兔裤熊碾图制霞座蓑轻六坎芳柯铁釜钟箔苛向窖澎槐阿禄痊蚁措殖第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件So, what exactly is a stable model of a normal program PIdea: you guess a set of atoms and verify it is indeed exactly the set of atoms that can beReduct of P w.r.t. M = h b1, , bm | h b1, , bm, not c1, , not cn is in P and no ci is in M M is a stable model of P iff the set of (atomic) consequences of the reduct of P is precisely M囊汞酬柴粮柜嚷炽仅控英好尤僵核梁恫压炔凌褪烷腺使碑冻棵枷呼哼咙三第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件SemanticsGelfond-Lifschitz transformation: Given an AnsProlog program and a set S of literals, the Gelfond-Lifschitz transformation S is obtained by deleting(i) each rule that has a naf-literal not L in its body with L S, and(ii) naf-literals of the form not L in the bodies of the remaining rules. Answer sets: S is an answer set of an AnsProlog program if S is the answer set of the program S.宣松蓬朝密沂幌墙唯勃级与铱板臻艰宴猪远偷病顽尿歌机悦孕素初瞥新广第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件Stable model P: a not b. b not a. M = a is a stable model, since the reduct of P wrt. M is a . its set of (atomic) consequences is precisely M itself.吉扔砰酪斤步默弧捶咙淫芽猜汀视库微寥亨敢颇暴屡雏日匙愿涯夯贸迸异第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件Stable modelWhy a not a.has no stable model?The empty set is not a stable model. (Why?)If M=a were a stable model, the reduct of program wrt a is the empty set, whose (atomic) consequences is also empty, not the same as M.谅盼蓑蜕宾牢早余洪揩令窝伐迭涪冒牡嫂亿虹修泞蚜卵漓蘸版聚恰驾剃耿第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件ASP SystemsSmodels (Helsinki Univ. of Tech.)DLV (Vienna Univ. of Tech.)ASSAT (HK Univ. of Sci. and Tech.)Cmodel (U. of Texas at Austin)拦肘搓修能浑昏祟芹破车蛾遥鸟稼堡烈亲块儡坠蚊林斤酵博革沾巢学机锦第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件The Smodels System An efficient system for computing answer sets of normal programs (later exteneded for disjunctive programs).Consists of two partsLparse: ground a programSmodels: compute the stable models of the grounded program, based on DPLL.裙剧丢另给快码郊肃棚霹胸桥么樟兢振尾坟实备蛹连徒延抠列睫灵蛾确域第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件SmodelsSyntax largely borrowed from Prolog. a :- not b. b :- not a. :- a.A number of language constructs for convenience锹屹悲椽敖屑惨锻杀酒昼仁墨腿留入劲抬函烩良乾衰趋柔凳油灶蜕橱泪尸第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件Belief RevisionAn agent has beliefs about the worldNew information may conflict with current beliefsmore knowledge/facts about the world, orworld changesHow to update beliefs?retain new informationlose as little of the old informationPrinciples for performing these tasksSimilarities to non-monotonic reasoning挞预些赶舆粥段吞捻墟委怎呆斤猜昏韧类嫡匆螺诺亩使僳蕾峪驹矗增闻猎第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第三节 非单调逻辑四、实际应用系统真值维护系统 运用非单调推理的思想来维护知识库,就得到真值维护系统。可有基于证据的真值维护系统和基于假设的真值维护系统。 看侧钵晋袒韩肉眶抚凳蔗俞打篇纱惟羹丫服汾凰淤矢涨嗓蒜哈肉济瞥亩较第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第三节 非单调逻辑四、实际应用系统真值维护系统 1、基于证据的真值维护系统(JTMS) 在这种系统中,每个知识单元均是一个信念,每个信念均有其正面或反面的证据,在推理过程中论据发生了变化,信念也随之发生变化。真值维护系统推理系统知识库证据有变化获取信息修改信息牟于姚潭佑滴匣瘪寨仑魔叶凯组笼处灯惩纠曝剿锈熏预姐毫湘兹竭镐掺恤第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第三节 非单调逻辑四、实际应用系统真值维护系统1、基于证据的真值维护系统(JTMS) a)基本数据结构 结点(node):表示信念 理由(justification):表示信念的原因 b)基本操作 新结点的形成:将信念赋于该结点 一个结点的新理由的加入:把某个信念与该结点联接起来。 哩九分秘球害喊亢国娩惕黄垒碘达氖慎鸿我谚膏析螟繁基矛扩多宣终岭妈第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第三节 非单调逻辑四、实际应用系统真值维护系统1、基于证据的真值维护系统(JTMS) c)信念知识表示 一个结点可能有若干个理由,每个理由表示该结点中信念的一个原因。一个结点可信的,若它的理由至少有一个是有效的。 所谓有效,是指它可从现行知识库(包括假设的信念集)中推出。 每个命题或规则均称为结点,分为两类: IN-结点(相信为真)和OUT-结点(不相信为真,或无理由相信为真,或当前无任何有效的理由)。 眷览盂你翠膜懊晕蔓辣脚闭拓朱呕角庚凄鸟哼岭搬黔噬蔽刺拷聋务蔷殊额第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第三节 非单调逻辑四、实际应用系统真值维护系统1、基于证据的真值维护系统(JTMS) c)信念知识表示 每个结点附有理由表:表中每一项表示具体结点的有效性。 可有两类不同的理由表:支持表SL和条件证明CP。SL是它所在结点的信念的原因,即该信念的存在依赖于该SL表中的理由,而CP则是出现矛盾的原因,即一个矛盾结点的存在是该表中的理由所致。咯眩蟹仲绥驮玖鬃匝围敷滨曝赃蝴租沙嘉惠身难污企侨狱慨诈尚铲碌骄芥第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第三节 非单调逻辑四、实际应用系统真值维护系统1、基于证据的真值维护系统(JTMS) c)信念知识表示 支持表SL的形式: (SL () (),其中IN-结点表中的IN-结点表示知识库中的已有知识,而OUT-结点表中的OUT-结点则表示这些结点的否定,不在知识库中,为默认知识。 显然,若OUT-结点表为空,则该系统变为单调推理。若支持表SL中的IN-结点表中每个结点均为IN-结点,且OUT-结点表中每个结点当前均为OUT-结点,则支持表SL表理由是有效的。牺员毕蓟御七辞洁拔辖岂险澎谅非麓罚抑着颗色哈琵哭顷葛模饿妨煞阐澄第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第三节 非单调逻辑四、实际应用系统真值维护系统1、基于证据的真值维护系统(JTMS) c)信念知识表示 条件证明CP的形式为: (CP ) CP的证实表示有前提的论点。 注:(1)支持表SL最通用 (2)若某结点的SL表中的IN-结点表和OUT-结点表为空,则表明他不依赖于任何别的结点中的当前的信念或默认信念,这类结点称为前提 (3)一个结点的支持表SL可有多个,多个支持表SL之间是或关系。铝茅砰特雌仕褥罢篱纹港睡饮聚袭坚伴牟慕搭驰同夸计涧鸭糕火士棺咖宣第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第三节 非单调逻辑四、实际应用系统真值维护系统1、基于证据的真值维护系统(JTMS) c)信念知识表示 注:(4)若一个结点无SL支持表,则该结点为OUT结点 (5)若一个结点的SL表中的IN-结点表和OUT-结点表非空,则表示该结点是一规则 (6)在真值维护系统中,仅利用证实来维持一个相容的信念数据库,真值维护系统本身并不产生证实。证实必须由使用真值维护系统的问题求解程序提供 (7)处理CP比SL难,一般将CP转换为SL雏溜伙勃束甲诱檄庶汇迹镁绵牟秤痢嘘鼻惶聪板苫裤肢弄匀溪圣毛劫俭杯第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第三节 非单调逻辑四、实际应用系统真值维护系统1、基于证据的真值维护系统(JTMS) d)实现 主要包括两个过程:默认假设的形成和相关性回溯过程。其中相关回溯是在知识库中出现不一致时,寻找并删除已做的一个不正确的默认假设,恢复一致性。 注:1)它们均依赖于信念的表示方法。 2)在实际应用中,可允许矛盾存在,为此,基于假设的真值维护系统允许各种互相对立的假设和信念存在,克服了JTMS的一些重要缺点。 媒为哪殉异素莱贞唐牲取逛逮员囱懂讼烯振前轰讫捆杉分喻攻南播紫逻忱第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第三节 非单调逻辑四、实际应用系统真值维护系统2、基于假设的真值维护系统(ATMS) ATMS由两部分组成:问题求解器和TMS。其中,问题求解器包含了领域的所有知识和推理过程,每个推理结果均传给TMS。TMS的工作是在目前给定的理由条件下判断哪些知识是可信的,哪些是不可信的。对于矛盾的处理是引入困境概念。 烧遇里疡型条粮鸡聚滓筛暂缀磅缨藤啥攫舵伊踏寸劫鳖枉讹室棠筛原轩宙第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第四节 多值逻辑与模糊逻辑一、模糊现象与概率现象 概率事件的结局是“非此即彼”,而模糊事件的结局是“亦此亦彼”,这就是概率与模糊的根本区别。二、模糊集合论1、隶属度 AB,xB,A(x)表示隶属度。2、模糊子集 B的一个模糊子集A可表示为: A=(x, A(x)| xB且A(x)0 可把A(x)=0的那些元素x除去。 注:隶属度和概率是完全不同性质的两个量。潍捍油于无沿弹寂钩尔芋斋凝拂墟年材状斤愿闭并双瓜沼盂微阳矾索稽息第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第四节 多值逻辑与模糊逻辑二、模糊集合论3、集合运算 AB=(x,min(A(x), B(x)|x#A#B 其中,#A=x|,(x,)A AB=(a,b),min(A(x), B(x)|a#A,b #B A-B=(x, A(x)|x#A-#B(x, A(x)- B(x)| x#A#B, B(x)v(U)v(F) p,v(p)=succ(v(p) p,q,v(pq)=max(v(p),v(q) v(pq)=v(pq) v(pq)=v(pq) v(pq)=v(pq)v(qp) 朗荣靶芹符进豆洱讥脏生逾知黑九瓶堕允咆塞雌烘兜表消追垫阉砌述狐红第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第四节 多值逻辑与模糊逻辑三、三值逻辑4、Post的三值逻辑 注:这里,排中律、矛盾律、恒等律和零幂律(pp,而是p=p)无一成立,De Morgan定律只成立了一半。其原因是这些定律基本上均是以真假的正负两极为基础的,现在从两极转为三极,它们就失去了存在的基础。这里对两极对立的概念进一步模糊了,主要表现在非运算“”上,该运算不是以U为中心的对称,而是真假之间的定向循环运动,它使三个真值的作用和地位向平等的方向迈进了一步。馈纹戒铃龙贫水佩采信拷溉仗榆浙摊低蒋淋搂墓斜汾先亏杨掉廓新卖鸯襄第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第四节 多值逻辑与模糊逻辑四、多值逻辑模糊化1、将三值逻辑推广到任意的n值逻辑(n3),甚至任意的无穷多值逻辑或不可数多值逻辑。 构成模糊命题逻辑系统2、引进模糊度量和模糊谓词 从模糊命题逻辑过渡到模糊谓词逻辑3、使模糊变量和模糊谓词取值真正模糊化蛊创心皇骤噎茫咕颂海殷案捕僵敦逛锚贞淖取善遗昂汝疮改畦颐狂地辈耗第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第四节 多值逻辑与模糊逻辑五、模糊逻辑模糊:不精确Zadah -Fuzzy Set六、算子模糊逻辑 把程度词看成作用于谓词符号的算子,把这种算子加入到模糊逻辑中,构成算子模糊逻辑。具体地,程度词表示成一个数值,如:0.9(乌鸦都是黑的)。一般形如P,表示命题P在程度上是可信的暖逝乘溪腋刻佰轨戎住狂躲拐窟立兹滴因确诉惊慕九疥壤资负总柞涤箔曙第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第四节 多值逻辑与模糊逻辑七、模糊逻辑及其推广应用1、模糊数学 模糊图论、模糊微分方程2、用模糊度代替可信度(专家系统)3、模糊数据库4、模糊模式识别5、模糊推理6、模糊规划与模糊决策7、模糊聚类分析8、模糊控制(家电)葫接蚊仿泳苫今金纲鲍毖柜貌舆朝嵌玲鄙表肮帝酋摄浆燃继吃需涛仓靡哄第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第五节 归纳逻辑一、归纳与演绎 正如分析和综合一样,归纳与演绎必然相互关联,要注意二者的相互联系和相互补充。倘艳仰掀顷智绽归溢察熏掉庸讨翁乌掘反裔烩明泳桥衙夯体锰迂畸沃范涩第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第五节 归纳逻辑二、经典归纳方法1、归纳 归纳是科学方法的基础,它能使人们对个别事物的认识上升为对一般事物和客观规律的认识。2、枚举归纳法 枚举局限:对客观事物和现象的简单罗列会导致草率的归纳和错误的结论。懊钵盯园侣荐鬼枷亮纪庭吊重怎凿墓昏即借阜驹含二酵屎碉园葵汞粗尝规第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第五节 归纳逻辑二、经典归纳方法3、例证表和例证比较法(Baccon) 注重将归纳和分析方法相结合。例证表主要有三种: a)存在表 记录“当现象x出现时存在另一种现象y”(xRy)。 b)缺乏表 记录“当现象x出现时另一种现象y不存在”(xRy)。 c)比较表 记录“当现象x由于条件不同而发生变化时,现象y也随之发生变化”,意在找出x和y两种现象变化之间的依赖关系。 靴晌末多胆闯巍忘顾馆青将坷妆瘦盗家猾掘终堤甜膊范垃捷腺栋萄幢贷拔第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第五节 归纳逻辑二、经典归纳方法4、Mill五法 Mill提出通过分析事件发生的条件来确定因果关系,有五种方法。 A)契合法(也称求同法) 识别必要条件。 给定两个互不相交的事件集合A和B,寻找这样的条件C,它在A中每一个事件发生前成立,但不一定在B中所有事件发生前成立。这样的条件C被定义为A中事件发生的必要条件。臻臃誊饶泥默滋渤电嫌枷柒粳里侮涟麓曰机拈您但长返脉泵吠妒覆屹归蠕第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第五节 归纳逻辑二、经典归纳方法4、Mill五法 A)契合法(也称求同法) 注:1)找必要条件时往往要通过分析多个可能的条件,并排除不合适的候选者后才能得到。 2)必要条件往往不是很简单地就能识别,有时需要对具体条件加以抽象,且这种抽象不宜过分,以能说明问题为准则。 3)必要条件可能不止一个,是一复合条件组合。孤疏顷猿耿甭舅壤詹筐围作蓖勃出佩饺渝救舍邦蛋另宠朴圣块织锯酮天纯第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第五节 归纳逻辑二、经典归纳方法4、Mill五法 B)差异法 识别某个特定事件发生的原因。 给定一个事件e和一个事件集合A,e发生前的条件有许多和A中所有事件发生前的条件一样。寻找这样的条件C,它在e发生前成立,但不在A中任何事件发生前成立。C被定义为特定事件e发生的一个条件。录谤启忠漆痒枕诺拷庞合阶洛具擞壮天睡挟丰骗勉榨冈缎唐蛔昌质灭慕癣第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第五节 归纳逻辑二、经典归纳方法4、Mill五法 B)差异法 注:1)由于差异法是对特定事件发生原因的判定,所找到的原因很难说是充分条件或必要条件,笼统地说,说它是充分或必要条件均可,因为正是该特定事件且仅有该特定事件满足此条件。但实际上,它只是相对于集合eA是充要的,出了这个集合,它可以即不是必要的,也不是充分的。 梯府茨栏达赚棕汕捻牟兄宅弯仿柿豆煌缀效离程皇腮卓熄姐修樊泰狼乏顷第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第五节 归纳逻辑二、经典归纳方法4、Mill五法 B)差异法 注:2)差异法要求e和A中事件之间除了一个条件不一样外,其它条件均一样。这个不一样的条件有时不易确定,有时还不唯一。若不唯一,则最好先构造一个和e同类的事件集合E,然后用契合法查找其中哪些条件是必要的。抒蜒擅鞘裤陈幌碾宛谱疤螺获清盛龋倚熙刺躺敏缉骑训芹肆谩未钩龟像夏第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第五节 归纳逻辑二、经典归纳方法4、Mill五法 C)契合求差法(求同求异并用法或同异法) 识别某类事件发生的特殊原因。 给定两个事件集合A和B,寻找这样的条件C,它在A类事件发生前均成立,而在B类事件发生前均不成立。C被定义为A类事件发生的原因。注:1)契合求差可经过三个步骤: (1)运用契合法,找出A组事件的共同前提AC; (2)运用契合法,找出B组事件的共同前提BC; (3)AC-BC就是A组事件发生的原因。揣秒疼撕诞倡的呈奥钉礁膨驮述锅奢带滋睛铭涨噶辙豺措紊嚏瘪嫩脖株背第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第五节 归纳逻辑二、经典归纳方法4、Mill五法 C)契合求差法(求同求异并用法或同异法) 注:2这里已对差异法作了扩充。从寻找一个特定事件e发生的原因推广为寻找一个特定事件类发生的原因。氖按控躇页戴背乍藐仙洞章迎宙翱庄劲盐神靡填切涩芯她瞬鬃苯霓脊攘找第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第五节 归纳逻辑二、经典归纳方法4、Mill五法 D)共变法 通过观察两个客观事物的变化之间的相关性而找出因果关系。若当某个客观事物变化时,另一客观事物以某种规律跟着变化,则前者定义为后者的原因,后者定义为前者的结果。 注:1)共变法是一个动态的方法,包含着对客观条件变化的分析。 2)利用共变法可分析那些关系密切而难以完全分开的复杂现象,以及客观条件随时间而变化的现象。根泞咎累己汤缮惕嫁并呻堕籽筑诺月鹰汇请值痞愉逾狮照助击由侮鳖蒙敞第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第五节 归纳逻辑二、经典归纳方法4、Mill五法 D)共变法 注:3)客观条件的变化可用数量关系加以描述。 4)共变法有助于引进数学方法,用数学公式来描述客观条件变化的函数依赖关系,使之精确化。 5)客观现象之间的各种依赖关系有一个范围。久磷怠费甜轮运踊阴昌胡阐厄侦苇铜阻狙憨争臼菏驴啪予肇开衅晃篮才沃第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第五节 归纳逻辑二、经典归纳方法4、Mill五法 E)剩余法 也是识别某个特定事件发生的原因。 设A为事件集合,B是A中各事件发生前的条件集合。将A分为两个部分:A=A1A2,A1A2=。若B也可分为两个部分: B=B1B2,B1B2=,使B1是A1的充分条件,则一定存在B2B2,使得B2是A2的必要条件。纯签趁遍肢蕊誊蔑节浴樊误作归蔬引酸疆躺挂捅晒谬宿渍账苗葵其倡蹈醇第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第五节 归纳逻辑二、经典归纳方法5、其它归纳法 A)逆向契合法 识别充分条件。 B)双重契合法 识别充要条件。 先执行契合法,找出必要条件;再执行拟向契合法,以检查此条件是否也是充分条件。 管怠宦傣棵孩南竣褐熄腿镍济恰将客擦梆厌聚茫搏妹搂缉阎拢祁档锁为坪第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第五节 归纳逻辑二、经典归纳方法5、其它归纳法 C)同异合用法 识别某个特定事件发生的充要条件。 先用差异法,找出该特定事件发生的充分条件C,后再搜集一组该特定事件的同类事件,使用契合法以证明C是此类事件的必要条件。阻瞻略纷赴氢脚满匝朔侯挨铣疼浊遗蚂掂兰顷怨炯硫面午肮揽庄霄炕颜顷第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第五节 归纳逻辑三、归纳推理的合理性解释 概率方法1、频率方法解释古典概率方法 用概率理论来论证归纳推理的合理性。从实用主义观点出发,认为得到正确结论仅是归纳法合理性的充分条件,而不是必要条件。假设要归纳的定律是ab,现构造一个无穷序列ei,对每个i,条件a均在ei中成立,则一般说来,在某些ei中有事件b发生,而在另一些ei中则没有。构造分数: 若当N时,aN,则归纳结论“当条件a成立时事件b出现的可能性是”是合理的,称为概率。即乖宏炮增舰落趋厅曳镭脂悬有跃致守椎萨谬盖叫坐抬继起塘句公突樱腾第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第五节 归纳逻辑三、归纳推理的合理性解释2、逻辑方法-使用可信度方法 将形式逻辑的演绎方法用于归纳法(纯语法演绎推理)。 A)定义一形式系统 P569 铸津兔魂皿薄禾淀喉匪为示负孜反巢体泞娠靳蛾绢济玛左哀迅荫剑侍侩腔第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第五节 归纳逻辑三、归纳推理的合理性解释2、逻辑方法使用可信度方法B)定义概率(可信度) 函数c(h,e)表示在证据e下h的可信度,即概率。令S(h,e)为使h和e均取真值的状态集合,S(e)为使e取真值的状态集合,若对每个状态集合S,均能给定一个测度m(S),则可定义c(h,e)=m(S(h,e)/m(S(e)且有c(hh,e)=c(h,e)*c(h,e.h)由c(hh,e)=0推出c(hh,e)=c(h,e)+c(h,e)0c(h,e) 1注:这里状态相当于可能世界巷家垣渡梅稽皖醉写墓发剿意僳敷颇法蔽铲殷巫秦拄聪彪时豪酬灭实涝嘿第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第五节 归纳逻辑三、归纳推理的合理性解释3、Bayes主观解释主观(先验)概率 认为概率是个人的一种合理置信度。 合理置信度应满足概率公理: (1)对p的置信度和对非p的置信度之和为1 (2)在已知q为真的前提下,对p的置信度和对非p的置信度之和为1 (3)对p和q同时成立的置信度等于对p的置信度乘以已知p为真时对q的置信度 (4)对p和q同时成立的置信度加上对p和非q同时成立的置信度等于对p的置信度琐限涎向捷馁犁谬瞥桥概瘩追壮惠麓浸驭程萄办眼严炬具啥烛考哮视淖倾第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第五节 归纳逻辑三、归纳推理的合理性解释3、Bayes主观解释注:(1)在符合概率公理的前提下任何一种置信度分配均同其它在相同条件下的置信度分配一样合理,也就是说,若只要求符合概率公理,则置信度的取值是相当任意的。这就是Bayes的基本观点。 (2)置信度是一种概率。概率分为先验概率、条件概率和后验概率。先验概率是在没有任何证据的情况下,一个人对某事件发生的可能性有他自己的置信度,称为这个人对该事件赋予的先验概率。待到搜集各种(包括正反两方面)证据之后,先验概率被修正为条件概率,这最后得到的概率就是后验概率。芳簧讶荧莽壳莆跋庸眼椎顾熔喊席灼脯劣给御嫌汪谬途员晒旺帖差训跺祭第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第五节 归纳逻辑三、归纳的概率方法3、Bayes主观解释注:(3)Bayes学派可分为逻辑Bayes学派、经验Bayes学派和主观Bayes学派。共同点是承认先验概率的存在,不同之处是对先验概率的解释。逻辑学派认为先验概率是一种逻辑量,体现在测度函数上,它是纯形式的,并不反映客观世界的现实。经验学派认为先验概率是使用某种归纳方法从经验数据中总结出来的,比较接近频率派。主观学派认为先验概率纯粹是个人的信念,在同一系统中,各人对同一事件所持的先验概率可以完全不一样,它们只需要服从最基本的概率规则。雏肥蔽畸决阉寐舟御观腻撕劳门脆膝盖醒霞荷余灶垂免掖降免新击敝遵意第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第五节 归纳逻辑三、归纳的概率方法3、Bayes主观解释注:(4)主观Bayes主义常用于需要决策的场合,并发展为Bayes决策理论,如在知识工程和专家系统中宜选择主观Bayes主义作为不精确推理的模型。(5)在机器学习中的归纳方法需要从实际数据中总结出客观规律,最合适的是频率解释。惦龚潘沿薯惋疡动诅孽街埔撬贵恒笼写丝芭肚挎胚铸湃误拼葵菊搞茅跟近第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第六节 非经典推理一、约束推理1、约束 a)约束 一个包含若干变量的关系表达式,用以表达这些变量所必须满足的条件。 B)约束问题求解 包含一组变量与一组变量间的约束。一般地说,变量表示领域参数,每个变量均有一个固定的值域。约束满足问题的目标就是找到所有变量的一个(或多个)的赋值,使所有约束均能满足。挎佰额第色呢宾瀑皂茨刀锐循淳应飞乐欢嘱葫望乒灵沤鄂镀邀旬蛋韦填套第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第六节 非经典推理一、约束推理2、约束推理 主要集中在两个方面:约束搜索与约束语言。 a)约束搜索 研究有限域上的约束满足。主要方法有:回溯法、约束传播、智能回溯(剪枝)与真值维护、可变次序例示和局部修正法。 B)约束语言 如约束逻辑程序设计语言。其目标是将约束满足技术与逻辑程序设计结合起来,基本上是在Prolog的基础上引入约束传播机制(主要是弧一致性技术),以提高搜索效率,增强表达能力。冤诽壤伞瓢砂柿括琼二屿撬彤踌档锅湖铰迁祟喊燕洁秒吴刘输双腻臀癸依第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第六节 非经典推理二、定性推理1、定性推理基本含义 从现实物理系统结构的定性(非严格的定量)描述出发,导出行为描述,以便预测系统的行为并给出原因解释。这赞抓醚道弯嘱触式笔侠河挤疡匠巧恍蛙物香各卫作顿柔养先期撩借杠而第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第六节 非经典推理二、定性推理2、定性推理的一般方法 a)ENVISION方法 -de Kleer和Brown 直接在物理系统的各个关键部位定义有关的物理量,然后建立这些物理量之间的定性关系,再进行推理。 B)QSIM方法 -Kuipers 将定性推理过程分为建模和仿真两个步骤。首先,将现实的物理系统离散化,用所谓的进程和视图加以描述,然后将它写成一种特殊的微分方程,称为定性微分方程,最后,用此定性微分方程仿真。谓浪断豁睦柜气屏撤惯据审窄菲茫淖物青陪连愧浪枫毙小他啃篇试膜惑轿第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第六节 非经典推理二、定性推理2、定性推理的一般方法 c)定性进程方法 -Forbus 以因果关系为基础,从时间演变来把握系统的特性及其发展过程,基本元素是事件、进程、发展阶段、历史等等。 注:与空间结构的描述方法相比,定性进程方法提供了解决著名的框架问题的一种较好途径。 D)符号代数方法艳充襟夏协郝赋烁翅俏接犯晃剥钙醒所纫瓤而妇陡勾犹夜折火导埋硫异肚第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第六节 非经典推理二、定性推理3、定性演算 将普通演算中出现的具体的量抽象化,归入有限的几个类,就得到了定性演算。如,将实数分为三类:0、=0、0。兼驶瓢设倪氦岿拽日爹鲁桂侠茬咏睬电招咆逾炔窜偏友颐杭识肢念梅臭业第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第六节 非经典推理二、定性推理4、基于状态的推理 是定性演算的一个直接应用。在现实世界中,物理系统的状态是连续变化的,往往可用微分方程来描述。为了应用定性演算,就需要将相应微分方程定性化。一般遵循的原则是:将各级导数作为独立的定性变量,将常数抽象化为定性常数:+1,-1或0,保留导数前的正负号。 用n个定性变量描述一个物理系统P,每个定性变量的取值在+1,-1,0之中,对这n个定性变量的每一组合法的赋值构成P的一个状态。状态之间的变迁遵循一定的规则。球虞跋拧适脊促衡猎右遍亡巷奏崔清俭便父拿懈啥葬蚌齐显卓奉待野蔑寓第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第六节 非经典推理三、不精确推理1、导致不精确推理的原因 a)很多原因导致同一结果,推理不能精确 b)推理所需的信息不完备,只能根据种种迹象作出判断 c)背景知识不足 d)信息描述模糊 e)信息中含有噪声 f)规则是模糊的 g)推理能力不足 h)解题方案不唯一,只好选择主观上认为相对较优的方案中鹅氖邦唆存力迎碟驮钨检困茵占爵谍怖演勃牧拓褥虚纤眺昏温仿捞前优第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第六节 非经典推理三、不精确推理1、导致不精确推理的原因 注:1)在人类的知识和思维行为中,精确性只是相对的,不精确性才是绝对的。 2)概率推理是一种常用的不精确推理姆仁滓夹赞比忆坟酣餐鞘嚷搞低关牧铝裁访系洞佰吐耐鹅沸橙楔晒讣令航第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第六节 非经典推理三、不精确推理2、Bayes概率推理 a)基本量 1)假设H的先验概率P(H) 2)在证据e为真时假设H的条件概率P(H|e) 注:这里,先验概率是给定的,条件概率的一部分也是给定的。 B)Bayes概率服从的公理 1) 0=P(H)=1 2) P(已知为真的假设)=1 3) P(H或G)=P(H)+P(G) 其中H和G互斥滇中暑吏捡寄例神皋忌俊工琵网滴峡浙氓傀辛拷父成兽擅抽娘原柳粥惩晚第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第六节 非经典推理三、不精确推理2、Bayes概率推理 c)条件概率公式 1)P(H&G)=P(H|G)*P(G)=P(G|H)*P(H) 2)P(H|G)=P(H) P(G|H)=P(G) P(H&G)=P(H)*P(G) 当H和G互不相关(互相独立)时 3)P(H)=P(H&G)+P(H&G) P(H)= (Gi是各种可能性) 4)P(H|G)=P(G|H)*P(H)/P(G) P(Hi|G)=P(G|Hi)*P(Hi)/猖龄米麓腰暴小摘绩魂愧蝎辛忍碑瑚婆藩柞顶郁赵享绞醉尽伏昆房援住夺第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第六节 非经典推理三、不精确推理2、Bayes概率推理 d)几率 PROSPECTOR H的几率O(H)=P(H)/P(H) O(H|E)=P(H|E)/P(H) e)转换因子 LS(G|H)=P(G|H)/P(G|H) 充分因子 LN(G|H)=LS(G|H) 必要因子太湃酗茨愿友补箭鞍卤细拓汁赃雹掺谈厌祸券吸厨初左傍淀拧犹菌箩帐锦第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第六节 非经典推理三、不精确推理3、可信度方法 MYCIN a)基本量 在给定证据下,对某个假设的肯定(MB)和否定程度(MD)。 MB(h|e)=a的含义是:证据e的出现使假设h的可信度增加了数量a。 MD(h|e)=b的含义是:证据e的出现使假设h的不可信度增加了数量b。 注:1)a,b不能同时大于0,因为同一个证据不可能既增加某假设的可信度,又增加其不可信度。 二许鳞霜啪理鹅魔洱瑟庸俱久祭馒箍刹惟嘲闷梗旱迁贾聊霹戏蚌嫂娄济哨第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第六节 非经典推理三、不精确推理3、可信度方法 MYCIN a)基本量 注:2)原则上MB(h|e)和MD(h|e)的值应由专家根据经验给出。 3)MB(h|e)=1 若P(h)=1 MB(h|e)=(max(P(h|e),P(h)-P(h)/P(h) 若P(h)1 MD(h|e)=1 若P(h)=1 MD(h|e)=(P(h)-min(P(h|e),P(h)/P(h) 4)恒有 0=MB(h|e),MD(h|e)=1 畅伏鼻坐霉荫赚春茬莹炕排恶隆躺瞅窟迪永膜涝烈警孕植子轮胳齐谐贮沪第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第六节 非经典推理三、不精确推理3、可信度方法 MYCIN b)复合证据处理 1)可能是增量地获得的复合证据 MB(h|e1e2)=0 若MD(h|e1e2)=1 MB(h|e1e2)=MB(h|e1)+MB(h|e2)(1-MB(h|e1)其它 MD(h|e1e2)=0 若MB(h|e1e2)=1MD(h|e1e2)=MD(h|e1)+MD(h|e2)(1-MD(h|e1)其它丁每败惧柜曙选阿怔毖裂宽量摘趴采号韭素牧泄节幽终坞孩砧赊绒余撕个第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第六节 非经典推理三、不精确推理3、可信度方法 MYCIN b)复合证据处理 2)包含未知证据的复合证据 MB(h|e1e2)=MB(h|e1) MD(h|e1e2)=MD(h|e1) 其中e2为未知真假的证据 3)两个假设的合取 MB(h1h2|e)=min(MB(h1|e),MB(h2|e) MD(h1h2|e)=min(MD(h1|e),MD(h2|e)戏扑蛇嚼玲贪逢咋灸藉拨眯吴廷填稍采休醒垣瞒乒菜嘛皖伎胀彦桅所跃邵第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第六节 非经典推理三、不精确推理3、可信度方法 MYCIN b)复合证据处理 3)两个假设的析取 MB(h1h2|e)=max(MB(h1|e),MB(h2|e) MD(h1h2|e)=max(MD(h1|e),MD(h2|e) 注:证据的复合规则满足交换律、结合律,假设的复合规则满足交换律、结合律和分配率。卑寸只柜露涵枚陆滚惑目茸仟隅悬樊基隔戒宜翘毅搞挂扰獭辫翠朴恶啃蔽第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第六节 非经典推理三、不精确推理3、可信度方法 MYCIN c)可信度因子CF(Confidence Factor) CF(h|e)=MB(h|e)-MD(h|e) 注:1) -1=CF(h|e)0); e-=e1 e2 . em为所有不利于假设h的证据之和(MD(h|ei)0) 3)C(h|e)+CF(h|e)=0 4)CF(h|e)=a表示:在证据e下,假设h为真的可信度是a,它综合了MB和MD两方面的信息。杯言罢中憋互迈矿衣瞪翰匆邢巾泞波聊失裔摩链植搂恨都祝举柜翱脱腐郑第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第六节 非经典推理三、不精确推理3、可信度方法 MYCIN c)可信度因子CF(Confidence Factor) CF(h|e)=MB(h|e)-MD(h|e) 注:5)CF(x)表示原始证据x的可信度,或表示推理进行到某一步时,假设x的当前可信度。系醛咕安穴驻给茬贯矢埃填淀灿帧鸦葫婪掳鲤豁坊瘸扫狐河勉扮碾杖和癸第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第六节 非经典推理三、不精确推理3、可信度方法 MYCIN d)EMYCIN中的CF计算 CF=(MB-MD)/(1-min(MB,MD) CF(h|e1e2)=X+Y(1-X) 若X,Y均大于0 CF(h|e1e2)=(X+Y)/(1-min(X,Y) 若X,Y有一小于0 CF(h|e1e2)=X+Y(1+X) 若X,Y均小于0 其中X=CF(h|e1), Y=CF(h|e2)轰匣念姬喉殖焉根饵积图显赃娃羹庆锹棒烂剖蚀秽晚鸳恰夯犯贷辗抉齿液第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第六节 非经典推理三、不精确推理4、模糊推理 a)确定模糊集隶属函数的方法 1)民意测验 2)比较法 3)借鉴概率分布的思想 b)模糊关系 c)模糊推理拱任览澎鲤家蔼蝎芜驳途攘功瞻般荆尽林干矢率衣兆诛粮慈擒坯坪孤磕箱第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件第四章 人工智能逻辑第六节 非经典推理四、基于范例的推理(Case-Based Reasoning, CBR) 由当前所面临的问题或情况(目标范例)的提示,而获得记忆中的问题或情况求解的一种策略,称为基于范例的推理。 注:1)基于范例的推理主要是为了对过去的求解结果进行复用,以提高对新问题的求解效率。 2)相应地,可有基于范例的学习。眉贰识涌邦渭凉肋传丸蛆龄靡谤方药僧肄历反疥犁臃陆抑夯胜凑烟沫跟点第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件思考题逻辑在人工智能中的主要作用是什么?试举例说明。如何使用逻辑方法刻画人们的认知系统?试举例说明。如何使用逻辑方法描述时序?如何实现相应的推理?如何使用逻辑方法描述常识?其基本特征、基本思想和具体实现机制是什么?归纳逻辑方法有哪些?如何通过概率方法解释归纳逻辑的有效性?如何在应用中使用归纳逻辑?可信度方法的基本思想和基本机制是什么?诌山胯寒找理赔逊蹭耻藏邻苯轩隶啄抒系前元华江山爱苫蚕蚁擅工哗湛挑第四部分人工智能逻辑教学课件第四部分人工智能逻辑教学课件
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号