资源预览内容
第1页 / 共18页
第2页 / 共18页
第3页 / 共18页
第4页 / 共18页
第5页 / 共18页
第6页 / 共18页
第7页 / 共18页
第8页 / 共18页
第9页 / 共18页
第10页 / 共18页
亲,该文档总共18页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
Modeling of CNT based composites: Numerical IssuesN. Chandra and C. Shet FAMU-FSUCollegeofEngineering,FloridaStateUniversity,Tallahassee,FL32310AMMLObjectiveTodevelopananalyticalmodelthatcanpredictthemechanicalpropertiesofshort-fibercompositeswithimperfectinterfaces.TostudytheeffectofinterfacebondstrengthoncriticalbondlengthlcTostudytheeffectofbondstrengthonmechanicalpropertiesofcomposites.ApproachTomodeltheinterfaceascohesivezones,whichfacilitatestointroducearangeofinterfacepropertiesvaryingfromzerobindingtoperfectbindingAMMLFig.Shearlagmodelforalignedshortfibercomposites.(a)representativeshortfiber(b)unitcellforanalysis(a)(b)ShearLagModel*Prelude1ThegoverningDEWhosesolutionisgivenbyWhereDisadvantages TheinterfacestiffnessisdependentonYoungsmodulusofmatrixandfiber,henceitmaynotrepresentexactinterfaceproperty.kremainsinvariantwithdeformationCannotmodelimperfectinterfaces*OriginalmodeldevelopedbyCox1andKelly21Cox,H.L.,J.Appl.Phys.1952;Vol.3:p.722Kelly, A., Strong Soilids, 2nd Ed., Oxford UniversityPress, 1973,Chap.5.AMMLPrelude2CohesiveZoneModelCZMisrepresentedbytraction-displacementjumpcurvestomodeltheseparatingsurfacesAdvantagesCZM can create new surfaces. Maintains continuity conditions mathematically, despite the physical separation. CZM represents physics of the fracture process at the atomic scale.Eliminates singularity of stress and limits it to the cohesive strength of the the material.It is an ideal framework to model strength, stiffness and failure in an integrated manner.AMMLModifiedShearlagModelThegoverningDEIftheinterfacebetweenfiberandmatrixisrepresentedbycohesivezone,thenEvaluatingconstantsbyusingboundaryconditions,stressesinfiberisgivenbyAMMLComparisonbetweenOriginalandModifiedShearLagModelVariationofstress-strainresponseintheelasticlimitwithrespecttoparameterbTheparameterb definedbydefinestheinterfacestrengthintwomodelsthroughvariablek.InoriginalmodelInmodifiedmodelinterfacestiffnessisgivenbyslopeoftraction-displacementcurvegivenbyInoriginalmodelkisinvariantwithloadinganditcannotbevariedInmodifiedmodelkcanbevariedtorepresentarangeofvaluesfromperfecttozerobondingAMMLComparisonwithExperimentalResultTheaveragestressinfiberandmatrixfaraappliedstraineisgivenbyThenbyruleofmixturethestressincompositescanbeobtainedasFig.Atypicaltraction-displacementcurveusedforinterfacebetweenSiCfiberand6061-AlmatrixForSiC-6061-T6-AlcompositeinterfaceismodeledbyCZMmodelgivenbyWithN=5,andk0=1,k1=10,k2=-36,k3=72,k4=-59,k5=12.Taking smax=1.8 sy,wheresyisyieldstressofmatrixanddmax=0.06dcAMMLFig. Comparison of experimental 1 stress-strain curve for Sic/6061-T6-Alcompositewithstress-straincurvespredictedfromoriginalshearlagmodelandCZMbasedShearlagmodel.1Dunn,M.L.andLedbetter,H.,Elastic-plasticbehavioroftexturedshort-fibercomposites,Actamater.1997;45(8):3327-3340Theconstitutivebehaviorof6061-T6Almatrix21canberepresentedbyComparison(contd.)yieldstress =250MPa,andhardeningparametersh =173MPa,n=0.46.Youngsmodulusofmatrixis76.4GPa.YoungsmodulusofSiCfiberisEf of423GPaResultcomparisonExperimental1Youngsmodulusis105GPaandfailurestrengthisaround515MPaEc115104.41540522(GPa)FailureStrength(MPa)VariableOriginalModifiedAMMLFEAModelThe CNT is modeled as a hollow tube with a length of 200 , outer radius of 6.98 and thickness of 0.4 . CNT modeled using 1596 axi-symmetric elements. Matrix modeled using 11379 axi-symmetric elements.Interface modeled using 399 4 node axisymmetric CZ elements with zero thicknessComparisonwithNumericalResultsFig.(a)Finiteelementmeshofaquarterportionofunitmodel(b)aenlargedportionofthemeshnearthecurvedcapofCNTAMMLLongitudinalStressinfiberatdifferentstrainlevelInterfacestrength=5000MPaInterfacestrength=50MPaAMMLShearStressinfiberatdifferentstrainlevelInterfacestrength=5000MPaInterfacestrength=50MPaAMMLCriticalBondLengthl/2Table1.Criticalbondlengthsforshortfibersoflength200andfordifferentinterfacestrengthsandinterfacedisplacementparameterdmax1value0.15.AMMLCriticalbondlengthvarieswithinterfaceproperty(Cohesivezoneparameters(smax,dmax1)Whentheexternaldiameterofasolidfiberisthesameasthatofahollowfiber,then,foranygivenlengththeloadcarriedbysolidfiberismorethanthatofhollowfiber.Thus,itrequiresalongercriticalbondlengthtotransfertheloadAthigherdmax1thelongitudinalfiberstresswhenthematrixbeginstoyieldislower,hencecriticalbondlengthreducesForsolidcylindricalfibers,atlowinterfacestrengthof50MPa,whenthefiberlengthis600andabove,thecriticalbondlengthoneachendofthefiberexceedssemi-fiberlengthforsomevaluesdmax1tendingthefiberineffectiveintransferringtheloadinterfacestrengthis5000MPaVariationofCriticalBondLengthwithinterfacepropertyinterfacestrengthis50MPaAMMLTable:VariationofYoungsmodulusofthecompositewithmatrixyoungsmodulus,volumefractionandinterfacestrengthEffectofinterfacestrengthonstiffnessofCompositesYoungsModulus(stiffness)ofthecompositenotonlyincreaseswithmatrixstiffnessandfibervolumefraction,butalsowithinterfacestrengthAMMLEffectofinterfacestrengthonstrengthofCompositesTableYieldstrength(inMPa)ofcompositesfordifferentvolumefractionandinterfacestrengthFibervolumefraction=0.02Fibervolumefraction=0.05Yieldstrength(whenmatrixyields)ofthecompositeincreaseswithfibervolumefraction(andmatrixstiffness)butalsowithinterfacestrengthWithhigherinterfacestrengthhardeningmodulusandpostyieldstrengthincreasesconsiderablyAMMLEffectofinterfacedisplacementparameterdmax1onstrengthandstiffnessFig.Variationofstiffnessofcompositematerialwithinterfacedisplacementparameterdmax1fordifferentinterfacestrengths.Fig.Variationofyieldstrengthofthecompositematerialwithinterfacedisplacementparameterdmax1fordifferentinterfacestrengths.AstheslopeofT-d curvedecreases(withincreaseindmax1),theoverallinterfacepropertyisweakenedandhencethestiffnessandstrengthreduceswithincreasingvaluesofdmax1.Whentheinterfacestrengthis50MPaandfiberlengthissmalltheyoungsmodulusandyieldstrengthofthecompositematerialreachesalimitingvalueofthatofmatrixmaterial.AMMLEffectoflengthofthefiberonstrengthandstiffnessFig.VariationofyieldstrengthofthecompositematerialwithdifferentfiberlengthsanddifferentinterfacestrengthsFig.VariationofYoungsmodulusofthecompositematerialwithdifferentfiberlengthsandfordifferentinterfacestrengthsForagivenvolumefractionthecompositematerialcanattainoptimumvaluesformechanicalpropertiesirrespectiveofinterfacestrength.ForcompositeswithstrongerinterfacetheoptimumpossiblevaluescanbeobtainedwithsmallerfiberlengthWithlowinterfacestrengthlongerfiberlengthsarerequiredtoobtainhighercompositeproperties.DuringprocessingitisdifficulttomaintainlongerCNTfiberstraigth.AMMLConclusion1.Thecriticalbondlengthorineffectivefiberlengthisaffectedbyinterface strength. Lower the interface strength higher is theineffectivelength.2.In addition to volume fraction and matrix stiffness, interfaceproperty, length and diameter of the fiber also affects elasticmodulusofcomposites.3.Stiffness and yield strength of the composite increases withincreaseininterfacestrength.4.Inordertoexploitthesuperiorpropertiesofthefiberindevelopingsuperstrongcomposites,interfacesneedtobeengineeredtohavehigherinterfacestrength.AMML
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号