资源预览内容
第1页 / 共43页
第2页 / 共43页
第3页 / 共43页
第4页 / 共43页
第5页 / 共43页
第6页 / 共43页
第7页 / 共43页
第8页 / 共43页
第9页 / 共43页
第10页 / 共43页
亲,该文档总共43页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
王中昭制作王中昭制作 如如果果回回归归模模型型的的解解释释变变量量中中含含有有定定性性变变量量,则则可可以以用用虚虚拟拟变变量量进进行行处处理理。在在实实际际经经济济问问题题中中,被被解解释释变变量量也也可可能能是是定定性性变变量量。如如通通过过一一系系列列解解释释变变量量的的观观测测值值观观察察人人们们对对某某项项动动议议的的态态度度,是是否否签签订订合合同同。对对某某一一商商品品是是否否购购买买(汽汽车车或或房房子子),某某件件事事情情的的成成功功和和失失败败,求求职职者者对对某某种种职职业业是是否否接接受受或或者者拒拒绝绝,那那么么这这种种选选择择就就可可以以用用1或或者者0来来表表示示,这这与与解解释释变变量量的的虚虚拟拟变变量量一一样样,只只不不过过这这里里的的变变量量为被解释变量,建模过程就较为复杂。为被解释变量,建模过程就较为复杂。 当当被被解解释释变变量量为为定定性性变变量量时时怎怎样样建建立立模模型型呢呢?这这就就是是要要介介绍绍的的二二元元选选择择模模型型或或多多元元选选择择模模型型。这这里里主主要要介介绍绍Tobit(线线性性概概率率)模模型,型,Probit(概率单位)模型和(概率单位)模型和Logit模型。模型。一、一般的离散因变量模型一、一般的离散因变量模型王中昭制作王中昭制作1Tobit(线性概率)模型(线性概率)模型Tobit模型的形式如下,模型的形式如下, Yt = + Xt + t (1)其中其中t为随机误差项,为随机误差项,Xt为解释变量,为解释变量, 和和 为待估计的参数。为待估计的参数。Yt为二元选择变量。此为二元选择变量。此模型由模型由James Tobit提出,因此得名。如利提出,因此得名。如利息税、机动车的费改税问题等。设息税、机动车的费改税问题等。设王中昭制作王中昭制作例例如如有有如如下下数数据据,其其X和和Y的的散散点点图图为为:obsXY132112351033610438105340164210743508490194830105101115230125640135450145781155941王中昭制作王中昭制作对对Yt取期望,取期望, E(Yt) = + Xt (2) 下面研究下面研究Yt的分布。因为的分布。因为Yt只能取两个值只能取两个值0和和1,所以,所以Yt 服从二项分布。把服从二项分布。把Yt的分布记为的分布记为: pt = P (Yt = 1) 1 - pt = P ( Yt = 0)则则: E(Yt) = 1P ( Yt = 1) + 0P ( Yt = 0) = pt = P ( Yt = 1)(3)由(由(2)和()和(3)式有)式有 pt = P ( Yt = 1) = +Xt (4)其中其中Yt的样本值是的样本值是0或或1,而预测值,而预测值(拟合值拟合值)是概率。是概率。因此模型因此模型(2)称为线性概率模型称为线性概率模型.王中昭制作王中昭制作以以pt=- 0.2+0.05Xt 为为例例,说说明明Xt 每每增增加加一一个个单单位位,则则采采用用第第一一种种选选择择(Yt = 1)的的概概率率增增加加0.05。假假设设用用这这个个模模型型进进行行预预测测,当当预预测测值值落落在在 0,1 区区间间之之内内(即即Xt取取值值在在4, 24 之之内内)时时,则则没没有有什什么么问问题题;但但当当预预测测值值落落在在0,1 区区间间之之外外时时,则则会会暴暴露露出出该该模模型型的的严严重重缺缺点点。因因为为概概率率的的取取值值范范围围是是 0,1,所所以以此此时时必必须须强强令令预预测测值值(概概率率值值)相相应应等等于于0或或1(见下图)。(见下图)。王中昭制作王中昭制作采用线性回归的方式来构建二元选择模型,会导致如下采用线性回归的方式来构建二元选择模型,会导致如下问题:问题:(1)、模型的随机误差项不能满足同方差的假设)、模型的随机误差项不能满足同方差的假设王中昭制作王中昭制作 因为线性概率模型的随机误差项的方差不是一个常数,因因为线性概率模型的随机误差项的方差不是一个常数,因此不能用此不能用OLS来估计模型,线性概率模型往往使用极大似然来估计模型,线性概率模型往往使用极大似然法估计参数,有关极大似然法的推导见书法估计参数,有关极大似然法的推导见书P238-239。 logistic回归参数的极大似然估计具有如下性质回归参数的极大似然估计具有如下性质:一是极大一是极大似然估计为一致估计。二是极大似然估计是渐进有效的,当似然估计为一致估计。二是极大似然估计是渐进有效的,当样本容量较大时,极大似然估计的方差小于其它方法的方差。样本容量较大时,极大似然估计的方差小于其它方法的方差。三是极大似然估计为渐进的正态分布。三是极大似然估计为渐进的正态分布。 因此变量的显著性检验是采用因此变量的显著性检验是采用Z统计量。统计量。(看相关的书:赵卫亚著计量经济学,机械工业出版社,(看相关的书:赵卫亚著计量经济学,机械工业出版社,2008年年9月,月,p188-189)。)。王中昭制作王中昭制作(2)、线性概率模型要求、线性概率模型要求Yt的取值落入的取值落入0,1内,但是模内,但是模型参数估计后,型参数估计后,(3)、在线性概率模型)、在线性概率模型 P(Yt =1) = + Xt中,模型假设中,模型假设Yt=1的的概率随概率随Xt的变化而线性变化,这个假设通常与实际情况不相符。的变化而线性变化,这个假设通常与实际情况不相符。以家庭购买汽车为例,当某个家庭的年收入以家庭购买汽车为例,当某个家庭的年收入X很低时,即便给予很低时,即便给予这个家庭一定幅度的增加收入,其购买汽车的概率也不会比原来这个家庭一定幅度的增加收入,其购买汽车的概率也不会比原来增加多少,当某个家庭的年收入增加多少,当某个家庭的年收入X很高时,因本来其购买汽车的很高时,因本来其购买汽车的概率就很大,即便再给予这个家庭一定幅度的增加收入,其购买概率就很大,即便再给予这个家庭一定幅度的增加收入,其购买汽车的概率也不会比原来增加多少,通常情况是:当汽车的概率也不会比原来增加多少,通常情况是:当X很大或者很大或者很小时,很小时,P(Yt =1)的变化均较缓慢,而当的变化均较缓慢,而当X取其它值时,取其它值时, P(Yt =1)的变化较快,的变化较快, P(Yt =1)与与Xt不是线性关系,如下图,因此必须要不是线性关系,如下图,因此必须要寻求符合这样非线性关系的模型。寻求符合这样非线性关系的模型。XP王中昭制作王中昭制作 基于线性概率模型上述缺点,希望能找到一种变基于线性概率模型上述缺点,希望能找到一种变 换换,使模型满足如下条件使模型满足如下条件: (1)使使解解释释变变量量Xt所所对对应应的的所所有有预预测测值值(概概率率值值)都落在(都落在(0,1)之间。)之间。 (2)同同时时对对于于所所有有的的Xt,当当Xt增增加加时时,希希望望Yt也也单单调增加或单调减少。调增加或单调减少。 显显然然累累积积概概率率分分布布函函数数F(Zt) 能能满满足足这这样样的的要要求求。采采用用累累积积正正态态概概率率分分布布函函数数的的模模型型称称作作Probit模模型型。用用正正态态分分布布的的累累积积概概率率作作为为Probit模模型型的的预预测测概概率率。另另外外logistic函函数数也也能能满满足足这这样样的的要要求求。采采用用logistic函函数的模型称作数的模型称作logit模型(服从模型(服从Logistic分布)。分布)。 王中昭制作王中昭制作仍假定:Yt= + Xt2Probit(概率单位)模型(概率单位)模型 即即Yt 服从正态分布服从正态分布,其累积概率分布函数曲线其累积概率分布函数曲线在在pt = 0.5附近的斜率最大。对应附近的斜率最大。对应Yt在实轴上的在实轴上的值,相应概率值永远大于值,相应概率值永远大于0、小于、小于1。显然。显然Probit模型比模型比Tobit模型更合理。模型更合理。Probit模型需模型需要假定要假定Yt 服从正态分布。服从正态分布。王中昭制作王中昭制作该该模模型型是是McFadden于于1973年年首首次次提提出出。其其采采用用的的是是logistic概率分布函数。其形式是:概率分布函数。其形式是:3logit模型模型对于给定的对于给定的Xt,pt表示相应个体做出某种选表示相应个体做出某种选择的概率。择的概率。王中昭制作王中昭制作Probit曲曲线线和和logit曲曲线线很很相相似似, logit曲曲线线近近似似于于自自由由度度为为4的的t分分布布曲曲线线。 两两条条曲曲线线都都是是在在pt=0.5处处有有拐拐点点,但但logit曲曲线线在在两两个个尾尾部部要要比比Probit曲曲线线厚厚。而而且且logit曲曲线线计计算算上上也也比比较较方方便便,所以所以Logit模型比模型比Probit模型更常用。模型更常用。 王中昭制作王中昭制作对对对对logitlogit曲线模型(曲线模型(曲线模型(曲线模型(6 6)式作如下变换)式作如下变换)式作如下变换)式作如下变换: :其中其中pt=P( Yt=1),由上式知回归方程的因变量是对数的某,由上式知回归方程的因变量是对数的某个具体选择的机会比个具体选择的机会比(概率比)。回归系数概率比)。回归系数是是“对数发生对数发生比率比率”。相应地。相应地, Exp () 是是“发生比率发生比率”,以以1 为临界值,为临界值,根据变量类型的不同有相应的解释。自变量的发生比率是根据变量类型的不同有相应的解释。自变量的发生比率是相对于参照组而言的。当发生比率大于相对于参照组而言的。当发生比率大于1 时时(系数为正时系数为正时),表明其对应的自变量,表明其对应的自变量(相对于参照组而言相对于参照组而言) 对结果对结果(pt =P( Yt=1)出现的概率有积极影响,且值越大,积极影响越出现的概率有积极影响,且值越大,积极影响越强;当发生比率小于强;当发生比率小于1 时时(系数为负时系数为负时),表明其对应自变表明其对应自变量对结果出现概率有消极影响,且值越小,消极影响越强。量对结果出现概率有消极影响,且值越小,消极影响越强。王中昭制作王中昭制作 logit模型的一个重要优点是把在模型的一个重要优点是把在 0,1 区间区间上预测概率的问题转化为在实数轴上预测一个事上预测概率的问题转化为在实数轴上预测一个事件发生的机会比问题。件发生的机会比问题。logit累积概率分布函数的累积概率分布函数的斜率在这斜率在这pt =0.5时最大,在累积分布两个尾端的时最大,在累积分布两个尾端的斜率逐渐减小。说明相对于斜率逐渐减小。说明相对于pt =0.5附近的解释变附近的解释变量量Xt的变化对概率(的变化对概率(P(Yt=1)的变化影响较大,的变化影响较大,而相对于而相对于pt接近接近0和和1附近的附近的Xt值变化进一步对概值变化进一步对概率的变化影响较小率的变化影响较小(即原来取即原来取Y=1或或Y=0的概率变的概率变化不大)。化不大)。王中昭制作王中昭制作 南开大学国际经济研究所南开大学国际经济研究所1999级研究生考试分数级研究生考试分数及录取情况见下页数据表(及录取情况见下页数据表(N = 97)。定义变量)。定义变量SCORE=考生考试分数;考生考试分数;Y :考生录取为:考生录取为1,未录取,未录取为为0;虚拟变量;虚拟变量D1:应届生为:应届生为1,非应届生为,非应届生为0。数据文件为:二元离散模型例数据文件为:二元离散模型例1.dta。例例1王中昭制作王中昭制作obsYSCORED1obsYSCORED1obsYSCORED11140113403321670275021401035033216802730313921360332169027314138703703311700272151384138033017102670613790390328172026617137804003281730263181378041032817402611913761420321175026001013710430321176025601113620440318177025201213621450318078025211313611460316179024511403591470308080024311503581480308181024201613561490304082024101703561500303183023911803551510303184023501903541520299185023202003540530297186022812103531540294087021912203500550293188021912303490560293189021412403490570292090021012503481580291191020412603471590291192019802703471600287193018912803441610286194018812903391620286095018213003380630282196016613103381640282197012303203361650282033033406602780数数据据表表王中昭制作王中昭制作 得得Logit模型估计结果如下模型估计结果如下命令:命令:logit y score d1 因为因为D1的系数没有显著性。说明的系数没有显著性。说明“应届生应届生”和和“非应非应届生届生”不是决定是否录取的重要因素。剔除不是决定是否录取的重要因素。剔除D1。得。得Logit模型估计结果如下:模型估计结果如下:王中昭制作王中昭制作如何分析?每增加一分,录取的概率如何分析?每增加一分,录取的概率pt增加多少?增加多少?注意是注意是Z统计量,而不是统计量,而不是T统计量。统计量。王中昭制作王中昭制作 拟合值图为:拟合值图为:拟合值图为:拟合值图为:LogitLogit模型预测值,拐点坐标模型预测值,拐点坐标模型预测值,拐点坐标模型预测值,拐点坐标 (358.7, 0.5)(358.7, 0.5),说明,说明,说明,说明358.7358.7分以上录取概率大。分以上录取概率大。分以上录取概率大。分以上录取概率大。王中昭制作王中昭制作选取选取Probit模型:在估计模型:在估计Probit模型过程中,模型过程中,D1的系数也没有显著性。剔除的系数也没有显著性。剔除D1,Probit模型最终估计结果是:拐点坐标模型最终估计结果是:拐点坐标 (358.5, 0.5),说明,说明358.5分以上录取概率大。分以上录取概率大。王中昭制作王中昭制作两种估计模型的部分预测结果如下表,两种估计模型的部分预测结果如下表,Probit模型模型Logit模型模型scoreYpiYpi37110.9997610.9997636210.90216810.90216836210.90216810.90216836110.82377210.82377235900.5456800.5456835800.37843100.37843135610.13527610.13527635600.13527600.13527635500.07347200.07347235400.03864300.03864335400.03864300.03864335300.01996900.01996935000.00264700.00264734900.00134300.00134334900.00134300.00134334810.9997610.99976王中昭制作王中昭制作 例题见例题见P245,某商业银行从历史贷款客户某商业银行从历史贷款客户中随机抽取中随机抽取78个样本,根据抽设计的指标个样本,根据抽设计的指标体系分别计算它们的商业信用支持度(记体系分别计算它们的商业信用支持度(记为为XY)、市场竞争地位等级(记为)、市场竞争地位等级(记为SC)和)和是否决定贷款(记是否决定贷款(记JG)。)。数据文件为:二数据文件为:二元离散模型例元离散模型例2.dta ,研究,研究JG与与XY和和SC的的关系。关系。例例2王中昭制作王中昭制作probit模型和模型和logit模型的估计结果模型的估计结果检验显示,两个模型差不多。总体拟合优度较好,检验显示,两个模型差不多。总体拟合优度较好,但是变量的显著性较差。但是变量的显著性较差。实证分析实证分析:如果有一个新客户,把他的如果有一个新客户,把他的XY和和SC资资料代入到模型中,就可决定是否贷款。料代入到模型中,就可决定是否贷款。王中昭制作王中昭制作例例3 关关于于测测度度哈哈萨萨克克斯斯坦坦居居民民贫贫困困程程度度的的二二元元选选择择模模型型(作作者者:国国际际粮粮食食政政策策研研究究所所的的Surech BABU和和heValerie RHOE,世世界界野野生生生物基金的生物基金的William Reidhead) 自自1991年哈萨克斯坦脱离前苏联独立以来,哈萨克年哈萨克斯坦脱离前苏联独立以来,哈萨克斯坦居民贫困程度加剧。斯坦居民贫困程度加剧。GDP平均每年下降平均每年下降6.9%。从。从一个粮食纯输出国变成了一个粮食进口的国家。一个粮食纯输出国变成了一个粮食进口的国家。1997年年的畜牧业产量也比的畜牧业产量也比1992年下降了年下降了30%。据调查全国平均。据调查全国平均15.8%的学龄前儿童处于发育不良状态。的学龄前儿童处于发育不良状态。调查后划定每人每天消费不足调查后划定每人每天消费不足79.87坚戈(坚戈(tenge,哈,哈萨克斯坦货币单位)的为贫困(萨克斯坦货币单位)的为贫困(Yt =1),高于),高于79.87坚坚戈的为非贫困戈的为非贫困(Yt =0)。共找到。共找到9个影响贫困程度的解释个影响贫困程度的解释变量,建立变量,建立Logit二元选择模型,得估计结果如下:二元选择模型,得估计结果如下:王中昭制作王中昭制作变量变量系数系数常数项常数项-1.314畜牧业产量畜牧业产量-0.011*拥有土地规模拥有土地规模-0.064*家庭规模家庭规模0.568*赡养比率赡养比率0.206收入比率收入比率-1.468户主年龄户主年龄-0.022*市场机会市场机会-0.002受教育水平受教育水平-0.165*家庭负担家庭负担0.525注注:带带*号为显号为显著性在著性在1%以以上上.每人每天消费每人每天消费不足不足79.87坚戈坚戈的为贫困(的为贫困(Yt =1),高于),高于79.87坚戈的为坚戈的为非贫困非贫困(Yt =0)。如何分析结。如何分析结果?果?王中昭制作王中昭制作例例4:农户劳动力的非农就业模型。:农户劳动力的非农就业模型。本文的主要考察天津市农村居民家庭的劳动力非农就业的主要因素,尤其重点本文的主要考察天津市农村居民家庭的劳动力非农就业的主要因素,尤其重点考察教育程度的影响。影响因素:考察教育程度的影响。影响因素:1、在劳动力市场发育相对成熟的条件下,教、在劳动力市场发育相对成熟的条件下,教育可以提高劳动力非农就业的概率,及劳动力教育程度越高,非农就业的机会育可以提高劳动力非农就业的概率,及劳动力教育程度越高,非农就业的机会越多,非农就业的倾向也就越高。越多,非农就业的倾向也就越高。2、农村居民家庭所在地区的区位条件,在其、农村居民家庭所在地区的区位条件,在其他条件保持不变的条件下,离中心城市越近,非农产业越发达,提供的就业机他条件保持不变的条件下,离中心城市越近,非农产业越发达,提供的就业机会就越多,同时农户进入非农产业就业的成本也越少,这样家庭中的劳动力进会就越多,同时农户进入非农产业就业的成本也越少,这样家庭中的劳动力进入非农业就业的可能性也越大。入非农业就业的可能性也越大。3、被调查调查对象所在村镇的乡镇企业的发达、被调查调查对象所在村镇的乡镇企业的发达程度直接影响农村居民的非农就业。乡镇企业越发达,农村居民非农业就业的程度直接影响农村居民的非农就业。乡镇企业越发达,农村居民非农业就业的概率越高,反之就越低。概率越高,反之就越低。4、农户拥有生产资料情况也是影响其劳动力非农就业、农户拥有生产资料情况也是影响其劳动力非农就业的重要因素。其中,如果其他条件相同,则非农业生产性固定资产越多,则农的重要因素。其中,如果其他条件相同,则非农业生产性固定资产越多,则农户中劳动力的非农业就业倾向越大。而农业生产性固定资产对劳动力非农就业户中劳动力的非农业就业倾向越大。而农业生产性固定资产对劳动力非农就业倾向影响比较复杂,如果农户所拥有农业生产性固定资产属于有劳动力替代型倾向影响比较复杂,如果农户所拥有农业生产性固定资产属于有劳动力替代型的,则它与劳动力非农就业倾向之间的关系是正相关的,反之如果属于劳动力的,则它与劳动力非农就业倾向之间的关系是正相关的,反之如果属于劳动力互补型的,则它与非农就业倾向之间存在着负相关关系。互补型的,则它与非农就业倾向之间存在着负相关关系。5、农户所拥有的耕地、农户所拥有的耕地的数量影响其非农就业的倾向,在我国现有的农业现代化程度比较低的条件下,的数量影响其非农就业的倾向,在我国现有的农业现代化程度比较低的条件下,耕地越多意味着农户必须将更多的劳动力分配到农业生产中,因此农户劳动力耕地越多意味着农户必须将更多的劳动力分配到农业生产中,因此农户劳动力的非农就业倾向越小,反之,耕地越少则非农就业的倾向越高。的非农就业倾向越小,反之,耕地越少则非农就业的倾向越高。6、家庭结构也、家庭结构也是影响农户劳动力非农就业的重要因素,家庭负担越轻,劳动力从事非农就业是影响农户劳动力非农就业的重要因素,家庭负担越轻,劳动力从事非农就业的倾向越大。的倾向越大。王中昭制作王中昭制作 根据上述分析,我们构建了如下的计量模型:根据上述分析,我们构建了如下的计量模型:F=C+1 DQCODE+2 NGDZC+3 FGDZC+4 XZQY+5 GD+6 FDINDEX 其中:其中:F为因变量,代表农户中是否有非农业就业的劳动力,如果有取为因变量,代表农户中是否有非农业就业的劳动力,如果有取1,没有,没有则取则取0;DQCODE为地区代码,如果被调查对象属于滨海三区和四郊取为地区代码,如果被调查对象属于滨海三区和四郊取1,否则,否则取取0;NGDZC代表农户所拥有的人均农业生产性固定资产的价值;代表农户所拥有的人均农业生产性固定资产的价值;FGDZC代表农户拥有的人均非农业生产性固定资产的价值;代表农户拥有的人均非农业生产性固定资产的价值;XZQY代表农户所在村镇乡镇企业的个数;代表农户所在村镇乡镇企业的个数;GD代表农户家庭人均拥有的耕地的数量;代表农户家庭人均拥有的耕地的数量;FDINDEX代表家庭结构的劳动力负担系数;代表家庭结构的劳动力负担系数;schoolk代表变量农户拥有的不同教育程度的劳动力的人数,其中代表变量农户拥有的不同教育程度的劳动力的人数,其中school1代表家庭中文盲或识字很少的劳动力的人数;代表家庭中文盲或识字很少的劳动力的人数;school2为家庭中小学文化为家庭中小学文化程度的劳动力的人数;程度的劳动力的人数;school3为家庭中具有初中文化程度的劳动力的人为家庭中具有初中文化程度的劳动力的人数;数;school4为高中文化程度的劳动力的人数;为高中文化程度的劳动力的人数;school5为中专文化程度的为中专文化程度的劳动力的人数;劳动力的人数;school6大专以上文化程度的劳动力的人数。大专以上文化程度的劳动力的人数。王中昭制作王中昭制作将将被被调调查查的的样样本本将将数数据据输输入入计计算算机机得得到到上上述述计量模型,具体结果见下表中的模型计量模型,具体结果见下表中的模型。王中昭制作王中昭制作 自变量的边际影响为其系数除以该自变自变量的边际影响为其系数除以该自变量的样本标准差。量的样本标准差。王中昭制作王中昭制作 模型模型包含了全部样本在内,模型包含了全部样本在内,模型只只包含了五县的样本,模型包含了五县的样本,模型只包含了四个只包含了四个近郊和滨海三区的样本近郊和滨海三区的样本王中昭制作王中昭制作结果显示,教育程度结果显示,教育程度school对劳动力的非农业就业倾向有着非常明显的作用,估对劳动力的非农业就业倾向有着非常明显的作用,估计系数显示,除文盲外,随着教育程度的提高,农户中的劳动力从事非农就业的计系数显示,除文盲外,随着教育程度的提高,农户中的劳动力从事非农就业的倾向越大。区位因素倾向越大。区位因素DQCODE和当地乡镇企业和当地乡镇企业XZQY的发达程度对农户的劳动力的发达程度对农户的劳动力从事非农就业产生了明显的促进作用。农户拥有农业生产固定资产从事非农就业产生了明显的促进作用。农户拥有农业生产固定资产NGDZC对其对其农就业的影响是负的,而非农业生产性固定资产农就业的影响是负的,而非农业生产性固定资产FGDZC的影响则是正的。这表的影响则是正的。这表明农户的资产存量对其非农就业的影响是双向的,具体的情况主要取决于资产的明农户的资产存量对其非农就业的影响是双向的,具体的情况主要取决于资产的种类。同时,农户拥有的耕地数量种类。同时,农户拥有的耕地数量GD对其非农业就业的影响是负的,这表明我对其非农业就业的影响是负的,这表明我国农业生产的产业化程度还比较低,农业生产方式还具有劳动密集型的特点。劳国农业生产的产业化程度还比较低,农业生产方式还具有劳动密集型的特点。劳动力负担系数动力负担系数FDINDEX对非农业就业未产生显著的影响。之所以如此的主要原对非农业就业未产生显著的影响。之所以如此的主要原因在于,在农村老人往往更多地承担起了照顾孩子的责任。劳动力的负担并未成因在于,在农村老人往往更多地承担起了照顾孩子的责任。劳动力的负担并未成为制约农户劳动力非农就业的主要因素。这一点与其他学者的研究结论类似。为制约农户劳动力非农就业的主要因素。这一点与其他学者的研究结论类似。王中昭制作王中昭制作从各因素的边际影响程度看,教育程度的提高对农户劳动力非农就业倾向变从各因素的边际影响程度看,教育程度的提高对农户劳动力非农就业倾向变动的影响程度逐渐增大。每增加一名大专及以上动的影响程度逐渐增大。每增加一名大专及以上school6教育程度的劳动力,教育程度的劳动力,农户中劳动力非农就业的概率就增加农户中劳动力非农就业的概率就增加59.36%;其次是中专为;其次是中专为24.7%;再次是;再次是高中为高中为21%;文盲排在第四位,为;文盲排在第四位,为17.22%;初中排在第五位,小学的边际影;初中排在第五位,小学的边际影响程度最小。在其他正向因素中,区位变动响程度最小。在其他正向因素中,区位变动DQCODE对农户非农就业概率变对农户非农就业概率变动的影响最大,农户从远离中心城市的边远农村迁入周边的近郊,其非农就动的影响最大,农户从远离中心城市的边远农村迁入周边的近郊,其非农就业的概率会增加业的概率会增加13%左右。乡镇企业左右。乡镇企业XZQY的因素次之,当地每增加一个乡镇的因素次之,当地每增加一个乡镇企业,农户劳动力非农就业的概率会增加企业,农户劳动力非农就业的概率会增加3%以上。农户拥有非农业生产性资以上。农户拥有非农业生产性资产存量产存量FGDZC的影响很小,每增加的影响很小,每增加1000元的人均非农业生产性资产,农户非元的人均非农业生产性资产,农户非农就业的概率增加不足农就业的概率增加不足1%。在其他制约农户劳动力非农就业的因素中,耕地。在其他制约农户劳动力非农就业的因素中,耕地GD的边际影响最大,农户的人均耕地每增加一亩,其劳动力非农就业的概率的边际影响最大,农户的人均耕地每增加一亩,其劳动力非农就业的概率就减少就减少2.3%。农业生产性资产存量的影响较小,农户每增加。农业生产性资产存量的影响较小,农户每增加1000元的人均农元的人均农业生产性资产,其劳动力的非农就业概率减少不足业生产性资产,其劳动力的非农就业概率减少不足1%。 王中昭制作王中昭制作 模型模型的结果表明,区位因素对农户劳动力非农就业的结果表明,区位因素对农户劳动力非农就业倾向的影响非常显著。为了对比不同区位中,各因素对倾向的影响非常显著。为了对比不同区位中,各因素对农户非农就业倾向的影响,我们将样本非为两组,滨海农户非农就业倾向的影响,我们将样本非为两组,滨海三区和四个近郊的样本为一组,五县的样本为另一组。三区和四个近郊的样本为一组,五县的样本为另一组。将这两组样本分别代入上述计量模型,结果见下表中的将这两组样本分别代入上述计量模型,结果见下表中的模型模型和模型和模型。王中昭制作王中昭制作 当我们只将滨海三区和四个近郊的样本代入模型后,计算结当我们只将滨海三区和四个近郊的样本代入模型后,计算结果表明(模型果表明(模型),教育对农户劳动力非农就业概率的影响依然很),教育对农户劳动力非农就业概率的影响依然很显著,并且随着农户劳动力教育程度的提高,其非农就业概率也逐显著,并且随着农户劳动力教育程度的提高,其非农就业概率也逐步增加。与全部样本的计算结果不同的是,生产性资产存量步增加。与全部样本的计算结果不同的是,生产性资产存量NGDZC对农户劳动力非农就业没有产生显著的影响。其原因可能对农户劳动力非农就业没有产生显著的影响。其原因可能在于,处于中心城市周边的四郊和滨海三区,由于其非农产业非常在于,处于中心城市周边的四郊和滨海三区,由于其非农产业非常发达,优越的区位条件在一定程度上弱化了农户的生产性资产存量发达,优越的区位条件在一定程度上弱化了农户的生产性资产存量对其非农就业的影响。将五县的样本代入模型后计算结果(模型对其非农就业的影响。将五县的样本代入模型后计算结果(模型)与包含全部样本的计算结果类似,这里不再赘述。)与包含全部样本的计算结果类似,这里不再赘述。王中昭制作王中昭制作 对比模型对比模型和模型和模型的结果表明,相对于近郊而言,教育程度对距离中的结果表明,相对于近郊而言,教育程度对距离中心城市相对较远的农户劳动力非农就业倾向的影响更大。从边际影响看,心城市相对较远的农户劳动力非农就业倾向的影响更大。从边际影响看,在滨海三区和四个近郊中,农户每增加一名小学、初中、高中、中专教育在滨海三区和四个近郊中,农户每增加一名小学、初中、高中、中专教育水平的劳动力,其非农就业的概率相应地增加水平的劳动力,其非农就业的概率相应地增加8.08%、10.47%、15.52%、22.65%。而在距离中心城区较远的五县,农户每增加一名小学、初中、高。而在距离中心城区较远的五县,农户每增加一名小学、初中、高中、中专和大专及以上教育水平的劳动力,其非农就业的概率相应地增加中、中专和大专及以上教育水平的劳动力,其非农就业的概率相应地增加14.39%、17.15%、24.44%、58.27%、63.26%。其中中等专业技术水平的。其中中等专业技术水平的教育的影响最为明显,这意味着在边远的农村地区大力发展教育,尤其是教育的影响最为明显,这意味着在边远的农村地区大力发展教育,尤其是专业技术教育对增加农户的非农就业有明显的促进作用。专业技术教育对增加农户的非农就业有明显的促进作用。王中昭制作王中昭制作 我我们们曾曾经经提提到到,目目前前我我国国农农村村劳劳动动力力非非农农就就业业的的途途径径主主要要有有三三条条:外外出出进进城城打打工工、进进入入本本地地区区的的乡乡镇镇和和私私营营企企业业和和从从事事非非农农业业家家庭庭经经营营。接接下下来来,我我们们进进一一步步考考察察教教育育对对这这三三种种非非农农就就业业途途径径的的影影响响。实实证证模模型型中中自自变变量量的的选选择择与与前前文文相相同同,只只不不过过这这里里的的因因变变量量分分别别为为农农户户中中是是否否有有劳劳动动力力外外出出打打工工、进进入入本本地地企企业业就就业业和和是是否否从从事事非非农农业业家家庭庭经经营营。为为了了使使结结果果更更具具有有集集中中性性,我我们们将将全全部部样样本本中中只只有有农农业业劳劳动动力力,没没有有非非农农业业劳劳动动力力的的样样本本全全部部剔剔除除。将将其其余余样样本代入模型,计算结果略。本代入模型,计算结果略。 王中昭制作王中昭制作 在在农农户户外外出出打打工工的的模模型型中中,小小学学、初初中中、中中专专和和大大专专及及以以上上教教育育水水平平对对农农户户外外出出打打工工产产生生了了明明显显的的促促进进作作用用,而而高高中中教教育育的的影影响响则则不不显显著著。区区位位因因素素则则对对外外出出打打工工的的影影响响是是负负面面的的,距距离离中中心心城城区区越越近近,农农户户月月容容易易在在本本地地获获得得非非农农就就业业的的机机会会,外外出出打打工工的的倾倾向向越越小小。农农户户所所拥拥有有的的生生产产性性资资产产存存量量的的影影响响并并不不显显著著。比比较较奇奇怪怪的的是是本本地地区区乡乡镇镇企企业业的的发发达达程程度度并并为为对对农农户户外外出出打打工工产产生生显显著著的的抑抑制制作作用用。相相比比之之下下,农农户户人人均均耕耕地地的的数数量量明明显显地地制制约约了了农农户户外外出出打打工工。从从变变量量的的边边际际影影响响上上看看,就就教教育育而而言言,农农户户每每增增加加一一名名小小学学教教育育程程度度的的劳劳动动力力,其其外外出出打打工工的的概概率率相相应应地地增增加加19%;每每增增加加一一名名初初中中教教育育程程度度的的劳劳动动力力,其其外外出出打打工工的的概概率率增增加加15%;每每增增加加一一名名中中专专教教育育程程度度的的劳劳动动力力,其其外外出出打打工工的的概概率率增增加加24%;每每增增加加一一名名大大专专及及以以上上教教育育程程度度的的劳劳动动力力,其其外外出出打打工工的的概概率率增增加加26%。农农户户的的人人均均耕耕地地每每增增加加1亩亩,其其劳劳动动力力外外出出打打工工的的概概率率相相应应地地减减少少2.3%。农农户户从从相相对对边边远远的县城迁入近郊,其劳动力外出打工的概率减少的县城迁入近郊,其劳动力外出打工的概率减少25%。王中昭制作王中昭制作当离散因变量取值不止一个时,就要用到多元选择当离散因变量取值不止一个时,就要用到多元选择模型,这样现象较普遍。例如,在银行信用风险管模型,这样现象较普遍。例如,在银行信用风险管理中,企业贷款的信用从高到低分为理中,企业贷款的信用从高到低分为5个等级,正常个等级,正常贷款、关注贷款、次级贷款、可疑贷款和损失贷款贷款、关注贷款、次级贷款、可疑贷款和损失贷款等。则等。则Y可以化为:正常贷款(取值可以化为:正常贷款(取值0)、关注贷款)、关注贷款(取值(取值1) 、次级贷款(取值、次级贷款(取值2) 、可疑贷款(取值、可疑贷款(取值3)和损失贷款(取值)和损失贷款(取值4)。)。又如:购买房子:有能力购买并已实现、有能力购又如:购买房子:有能力购买并已实现、有能力购买但没实现、想买但无能力购买、不想购买。买但没实现、想买但无能力购买、不想购买。4、排序选择模型、排序选择模型王中昭制作王中昭制作1.面板数据的面板数据的logit模型模型实例:实例:15省收入消费面板数据省收入消费面板数据.dta经过处理后得到:经过处理后得到:15省收入消费面板离散因变量数据省收入消费面板离散因变量数据.dta2. 面板数据的面板数据的probit模型模型3. 面板数据的面板数据的tobit模型模型二、面板离散因变量模型二、面板离散因变量模型王中昭制作王中昭制作 clear use 15省收入消费面板离散因变量数据.dta,clear xtlogit y cp2-cp15 ip2-ip15 /由probchi2=0.9942知拟合效果不好.因为y是乱取的. xtlogit y cp2-cp15 ip2-ip15 year2-year6 *如果考虑到fe(固定效应)或者re(随机效应),则加上fe或re. xtlogit y cp2-cp15 ip2-ip15,re xtlogit y cp ip,fe *2. 面板数据的probit模型 xtprobit y cp2-cp15 ip2-ip15 year2-year6 *- *3. 面板数据的tobit模型 xttobit y cp2-cp15 ip2-ip15 year2-year6 王中昭制作王中昭制作赠送精美图标王中昭制作王中昭制作1、字体安装与、字体安装与设置置如果您对PPT模板中的字体风格不满意,可进行批量替换,一次性更改各页面字体。1.在“开始”选项卡中,点击“替换”按钮右侧箭头,选择“替换字体”。(如下图)2.在图“替换”下拉列表中选择要更改字体。(如下图)3.在“替换为”下拉列表中选择替换字体。4.点击“替换”按钮,完成。422、替、替换模板中的模板中的图片片模板中的图片展示页面,您可以根据需要替换这些图片,下面介绍两种替换方法。方法一:更改图片方法一:更改图片1.选中模版中的图片(有些图片与其他对象进行了组合,选择时一定要选中图片本身,而不是组合)。2.单击鼠标右键,选择“更改图片”,选择要替换的图片。(如下图)注意:注意:为防止替换图片发生变形,请使用与原图长宽比例相同的图片。42王中昭制作王中昭制作PPT放映设置PPT放映场合不同,放映的要求也不同,下面将例举几种常用的放映设置方式。让让PPT停止自动播放停止自动播放1. 单击”幻灯片放映”选项卡,去除“使用计时”选项即可。让让PPT进行循环播放进行循环播放1.单击”幻灯片放映”选项卡中的“设置幻灯片放映”,在弹出对话框中勾选“循环放映,按ESC键终止”。
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号