资源预览内容
第1页 / 共26页
第2页 / 共26页
第3页 / 共26页
第4页 / 共26页
第5页 / 共26页
第6页 / 共26页
第7页 / 共26页
第8页 / 共26页
第9页 / 共26页
第10页 / 共26页
亲,该文档总共26页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
测量与计算仰角和俯角铅铅直直线线水平线水平线视线视线视线视线仰角仰角俯角俯角在进行测量时:在进行测量时:从下向上看,视线与水平线的夹角叫做从下向上看,视线与水平线的夹角叫做仰角仰角;从上往下看,视线与水平线的夹角叫做从上往下看,视线与水平线的夹角叫做俯角俯角方向角如图:点如图:点A在在O的北偏东的北偏东30点点B在点在点O的南偏西的南偏西45(西南方向)(西南方向)3045BOA东东西西北北南南 【例例1 】 如图,如图, 在上海黄埔江东岸,矗在上海黄埔江东岸,矗立着亚洲第一的电视塔立着亚洲第一的电视塔“东方明珠东方明珠”,某校学,某校学生在黄埔江西岸生在黄埔江西岸B处,测得塔尖处,测得塔尖D的仰角为的仰角为45,后退,后退400m到到A点测得塔尖点测得塔尖D的仰角为的仰角为30,设,设塔底塔底C与与A、B在同一直线上,试求该塔的高度在同一直线上,试求该塔的高度ACBD3045解解: :设塔高设塔高CD=x m在在RtBCD中,中,DNC=45BC=xCA=400+x在在RtACD中,中,DAC=30AC=xtan60=400+x塔高塔高CD 为为 m (1)如图,某飞机于空中)如图,某飞机于空中A处探测到目处探测到目标标C,此时飞行高度,此时飞行高度AC=1500米,从飞机上米,从飞机上看地平面控制点看地平面控制点B的俯角的俯角a=30,求飞机,求飞机A到到控制点控制点B距离距离ABC小练习小练习 【例例2】如图,海岛如图,海岛A四周四周45海里周围内海里周围内为暗礁区,一艘货轮由东向西航行,在为暗礁区,一艘货轮由东向西航行,在B处处见岛见岛A在北偏西在北偏西60,航行,航行18海里到海里到C,见岛,见岛A在北偏西在北偏西45,货轮继续向西航行,有无触礁,货轮继续向西航行,有无触礁的危险?的危险?ABDCPP14560 (1)如图,一艘渔船正以)如图,一艘渔船正以40海里海里/小时的速小时的速度由西向东赶鱼群,在度由西向东赶鱼群,在A处看某小岛处看某小岛C在船的北偏在船的北偏东东60,半个小时后,渔船行止,半个小时后,渔船行止B处,此时看见小处,此时看见小岛岛C在船的北偏东在船的北偏东30已知以小岛已知以小岛C为中心,周围为中心,周围15海里以内为我军导弹部队军事演习的着弹危险海里以内为我军导弹部队军事演习的着弹危险区,问这艘渔船继续向东追赶鱼群,是否有进入区,问这艘渔船继续向东追赶鱼群,是否有进入危险区的可能危险区的可能?小练习小练习解:设解:设BD=x 海里海里由题意得由题意得AB=20,AD=20+x在在RtACD和和RtBCD中,中,CD=ADtan30=BDtan60x=10所以这艘渔船继续向东追赶鱼群,不会进入危险区所以这艘渔船继续向东追赶鱼群,不会进入危险区15 (2)如图,海岛)如图,海岛A的周围的周围15海里内有暗礁,鱼海里内有暗礁,鱼船跟踪鱼群由西向东航行,在点船跟踪鱼群由西向东航行,在点B处测得海岛处测得海岛A位于位于北偏东北偏东60,航行,航行16海里到达点海里到达点C处,又测得海岛处,又测得海岛A位于北偏东位于北偏东30,如果鱼船不改变航向继续向东航行,如果鱼船不改变航向继续向东航行有没有触礁的危险?有没有触礁的危险? 有触礁的危险有触礁的危险小练习小练习 坡面的铅直高度坡面的铅直高度h h和水平宽度的比叫做和水平宽度的比叫做坡坡度度(或叫做(或叫做坡比坡比),一般用),一般用i i表示把坡面与表示把坡面与水平面的夹角水平面的夹角叫做叫做坡角坡角坡度、坡角h 例例3 如图如图 ,水库大坝的横断面是梯形,坝顶宽,水库大坝的横断面是梯形,坝顶宽6m,坝高,坝高23m,斜坡,斜坡AB的坡度的坡度i=1 3,斜坡,斜坡CD的的坡度坡度i=1:2.5,求坝底宽,求坝底宽AD和斜坡和斜坡AB的长(精确到的长(精确到0.1m) 坝底坝底AD的宽为的宽为132.5m,斜坡,斜坡AB的的长为长为72.7m 练习练习 如图,温州某公园入口处原有三级台阶,如图,温州某公园入口处原有三级台阶,每级台阶高为每级台阶高为20cm,深为,深为30cm为方便残废人士,为方便残废人士,现拟将台阶改为斜坡,设台阶的起始点为现拟将台阶改为斜坡,设台阶的起始点为A,斜,斜坡的起始点为坡的起始点为C,现将斜坡的坡角,现将斜坡的坡角BCA设计为设计为12,求,求AC的长度的长度 (tan12 0.2) (2)如图,在山坡上种树,要求株距)如图,在山坡上种树,要求株距(相邻两树间的水平距离)是(相邻两树间的水平距离)是5.5m,测得斜,测得斜坡的倾斜角是坡的倾斜角是24,求斜坡上相邻两树的坡面,求斜坡上相邻两树的坡面距离是多少(精确到距离是多少(精确到0.1m cos24=0.9) (1)将实际问题抽象为数学问题(画出平)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);面图形,转化为解直角三角形的问题); (2)根据条件的特点,适当选用锐角三角)根据条件的特点,适当选用锐角三角函数等去解直角三角形;函数等去解直角三角形; (3)得到数学问题的答案;)得到数学问题的答案; (4)得到实际问题的答案)得到实际问题的答案 利用解直角三角形的知识解决实际问利用解直角三角形的知识解决实际问题的一般过程是:题的一般过程是:归纳归纳(1)三边之间的关系)三边之间的关系 a2b2c2(勾股定理);(勾股定理);(2)锐角之间的关系)锐角之间的关系 A B 90(3)边角之间的关系)边角之间的关系1解直角三角形的依据解直角三角形的依据ABCabc课堂小结 (1)将实际问题抽象为数学问题(画出)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);平面图形,转化为解直角三角形的问题); (2)根据条件的特点,适当选用锐角三)根据条件的特点,适当选用锐角三角函数等去解直角三角形;角函数等去解直角三角形; (3)得到数学问题的答案;)得到数学问题的答案; (4)得到实际问题的答案)得到实际问题的答案 2利用解直角三角形的知识解决利用解直角三角形的知识解决实际问题的一般过程是:实际问题的一般过程是:1在在ABC中,中,C=90,解这个直角三角形,解这个直角三角形A=60,斜边上的高,斜边上的高CD = ;A=60,a+b=3+ 解:(解:(1)B = 90-A = 30AC=随堂练习60ABCD2在在RtABC中中C90,AD=2AC=2BD,且且DEAB(1)求)求tanB;(2)若)若DE=1,求,求CE的长的长ACBEDCE53如图,在如图,在ABC中,中,AB=AC=13,BC=10,求:求:sinB,cosB,tanB的值的值ABCD解解: :过点过点A作作ADBC于于D,垂足为,垂足为DAB=AC=13, ADBC,BC=10BD=CD=5AD=12 4为测量松树为测量松树AB的高度,一个人站在距的高度,一个人站在距松树松树20米的米的E处,测得仰角处,测得仰角ACD=56,已知,已知人的高度是人的高度是176米,求树高(精确到米,求树高(精确到0.01米)米)解:在解:在RtACD中,中,tgC=AD/CD,AD=CDtanC=BEtanC=20tan56=201.482629.65(米米)AB=AD+BD=29.65+1.76=31.41(米米)答:树高答:树高31.41米米56ADBCED75450ABC 5如图,在如图,在ABC中,已知中,已知AC=8,C=75,B= 45,求,求ABC的面积的面积8解解:过过C作作CDAB于于D, B=45,ACB=75 A=60 sinA= cosA= BDC = 90SABC=BCD=45 BD=CD= CD=ACsin60=AD=ACcos60=4AC1000米米570米米B 6我军某部在一次野外训练中,有一辆坦克我军某部在一次野外训练中,有一辆坦克准备通过一座小山,已知山脚和山顶的水平距离为准备通过一座小山,已知山脚和山顶的水平距离为1000米,山高为米,山高为580米,如果这辆坦克能够爬米,如果这辆坦克能够爬30的的斜坡,试问:它能不能通过这座小山?斜坡,试问:它能不能通过这座小山?A 30这辆坦克不能通过这座小山这辆坦克不能通过这座小山tan 30=0.577 tan30tanA = =解:解: BCAC , BC=570米米 , AC=1000米米= 0.58 1. 2 AB = 6.18m,AD = 3.63m.3 143m.4 4 221m.习题答案
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号