资源预览内容
第1页 / 共18页
第2页 / 共18页
第3页 / 共18页
第4页 / 共18页
第5页 / 共18页
第6页 / 共18页
第7页 / 共18页
第8页 / 共18页
第9页 / 共18页
第10页 / 共18页
亲,该文档总共18页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
变化率问题(教学课件)通过阅读引言我们知道:1.随着对函数的深入研究产生了微积分随着对函数的深入研究产生了微积分, ,它是数学发它是数学发展史上的一个具有划时代意义的伟大创造,被誉为展史上的一个具有划时代意义的伟大创造,被誉为数学史上的里程碑数学史上的里程碑. .微积分的创立者是微积分的创立者是2牛顿和莱布尼茨牛顿和莱布尼茨. .他们都是著名的科学家,我们应该认识一下.牛顿(牛顿(Isacc Newton,1642 - 1727)Isacc Newton,1642 - 1727)是英国数学是英国数学家、天文学家和物理学家家、天文学家和物理学家是世界上出类拔萃的科学家。是世界上出类拔萃的科学家。 当空气容量从当空气容量从V1增加到增加到V2时时,气球的气球的平均膨胀率是多少平均膨胀率是多少?思考思考问题2 高台跳水 在在高高台台跳跳水水运运动动中中, 运运动动员员相相对对于于水水面面的的高高度度 h (单单位位:m)与与起起跳跳后后的的时时间间 t (单单位位:s) 存存在在函函数数关系关系:问题问题2 高台跳水高台跳水 在高台跳水运动中在高台跳水运动中, 运动员相对于水面的高度运动员相对于水面的高度 h (单位单位:m)与起跳后的时间与起跳后的时间 t (单位单位:s) 存在函数关系存在函数关系 如果用运动员在某段时间内的平均速度如果用运动员在某段时间内的平均速度 描述其运描述其运动状态动状态, 那么那么:在在0 t 0.5这段时间里这段时间里,在在1 t 2这段时间里这段时间里,平均速度不能反映他在这段时间里运动状态,需要用瞬时速度描述运动状态。 计算运动员在计算运动员在 这段时间里的平均速度这段时间里的平均速度,并并思考下面的问题思考下面的问题:(1) 运动员在这段时间里是静止的吗运动员在这段时间里是静止的吗?探探 究究thO(2) 你认为用平均速度描述运动员的运动状态有什么你认为用平均速度描述运动员的运动状态有什么问题吗问题吗?平均变化率平均变化率: 式子式子 令令x = x2 x1 , y = f (x2) f (x1) ,则则称为函数称为函数 f (x)从从x1到到 x2的平均变化率的平均变化率.平均变化率的定义:1、式子中式子中x 、 y 的值可正、可负,但的值可正、可负,但 的的x值不能为值不能为0, y 的值可以为的值可以为02、若函数、若函数f (x)为常函数时,为常函数时, y =0 理理解解3、变式变式:观察函数观察函数f(x)的图象的图象平均变化率平均变化率表示什么表示什么?思考xyoBx2f (x2)Ax1f (x1)f (x2)-f (x1)x2-x1直线AB的斜率y=f (x)例例 (1) 计算函数计算函数 f (x) = 2 x +1在区间在区间 3 , 1上的平均变化率上的平均变化率 ;(2) 求函数求函数f (x) = x2 +1的平均变化率。的平均变化率。(1)解:解: y=f (-1)- f (-3)=4 (2)解:解: y=f (x+ x)- f (x) =2 x x+( x )2 x=-1- (-3)=2练习1.已知函数f(x)=-x2+x的图象上的一点A(-1,-2)及临近一点B(-1+x,-2+y),则y/x=(D ) A . 3 B . 3x-(x)2 C . 3-(x)2 D . 3-x l2、求y=x2在x=x0附近的平均变化率. 2x0+x 小结:小结:1.函数的平均变化率函数的平均变化率l2.求函数的平均变化率的步骤: (1)求函数的增量:f=y=f(x2)-f(x1); (2)计算平均变化率:再见谢谢指导
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号