资源预览内容
第1页 / 共30页
第2页 / 共30页
第3页 / 共30页
第4页 / 共30页
第5页 / 共30页
第6页 / 共30页
第7页 / 共30页
第8页 / 共30页
第9页 / 共30页
第10页 / 共30页
亲,该文档总共30页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
2-7 2-7 拉(压)超静定问题拉(压)超静定问题一一. . 静定与超静定的概念静定与超静定的概念引例引例: : 在日常生活中乃至在工程中我们常常遇到仅在日常生活中乃至在工程中我们常常遇到仅靠静力平衡方程无法求得约束反力的例子。靠静力平衡方程无法求得约束反力的例子。“两个两个和尚抬水吃,和尚抬水吃,三个和尚三个和尚三个和尚三个和尚没水吃没水吃”,恐怕是最早说到,恐怕是最早说到超静定问题的例子了。超静定问题的例子了。17741774年,欧拉在研究桌子四年,欧拉在研究桌子四条腿的受力问题时才真正开始研究超静定问题。条腿的受力问题时才真正开始研究超静定问题。DABC刚体2-7 2-7 拉(压)超静定问题拉(压)超静定问题拉压杆超静定PPT课件静定问题:静定问题:若未知力(外力或内力)的个数等于独立的平若未知力(外力或内力)的个数等于独立的平衡方程的个数,仅用静力平衡方程即可解出全部未知力,衡方程的个数,仅用静力平衡方程即可解出全部未知力,这类问题称为静定问题,相应的结构称静定结构。这类问题称为静定问题,相应的结构称静定结构。平面力系:平面力系: 共线力系共线力系 汇交力系汇交力系 平行力系平行力系平衡方程数:平衡方程数: 未知力数:未知力数: 1 2 21 2 22-7 2-7 拉(压)超静定问题拉(压)超静定问题拉压杆超静定PPT课件超静定问题:超静定问题:若未知力(外力或内力)的个数多于独立的若未知力(外力或内力)的个数多于独立的平衡方程的个数,仅用静力平衡方程便无法确定全部未知平衡方程的个数,仅用静力平衡方程便无法确定全部未知力,这类问题称为超静定问题或静不定问题力,这类问题称为超静定问题或静不定问题. .平面力系:平面力系: 共线力系共线力系 汇交力系汇交力系 平行力系平行力系平衡方程数:平衡方程数: 未知力数:未知力数: 1 2 22 3 42-7 2-7 拉(压)超静定问题拉(压)超静定问题拉压杆超静定PPT课件超静定次数:超静定次数:未知力个数与平衡方程数之差,也等于未知力个数与平衡方程数之差,也等于多余约束数多余约束数多余约束:多余约束:在静定结构上加在静定结构上加上的一个或几个约束,上的一个或几个约束,对于对于维持平衡来说是不必要的约维持平衡来说是不必要的约束束(但对于特定地工程要求(但对于特定地工程要求是必要的)称多余约束。对是必要的)称多余约束。对应的约束力称多余约束反力应的约束力称多余约束反力由于超静定结构能有效降低结构的内力由于超静定结构能有效降低结构的内力及变形,在工程上(如及变形,在工程上(如桥梁桥梁桥梁桥梁等)应用非等)应用非常广泛。常广泛。相应的结构称超静定结构或静不定结构。相应的结构称超静定结构或静不定结构。2-7 2-7 拉(压)超静定问题拉(压)超静定问题拉压杆超静定PPT课件二、超静定问题的一般解法二、超静定问题的一般解法 ( (1) ) 列出平衡方程;列出平衡方程; ( (3) ) 列出物理方程列出物理方程(即胡克定律即胡克定律);); ( (2) ) 根据杆或杆系的变形几何关系,根据杆或杆系的变形几何关系,建立变形几何方程建立变形几何方程 (变形协调方程、变形协调条件);(变形协调方程、变形协调条件); ( (4) ) 联立求解。联立求解。2-7 2-7 拉(压)超静定问题拉(压)超静定问题拉压杆超静定PPT课件例例 4 图示两端固定直杆,已知:图示两端固定直杆,已知:F, l1,E1,A1,l2, E2, A2,求:,求:FA,FB。 解:为一次超静定问题解:为一次超静定问题1静力平衡方程静力平衡方程2变形几何方程变形几何方程( (1) )( (2) )3物理方程物理方程( (3) )ABlll12CFFAB1F2FAFN1FBFN22-7 2-7 拉(压)超静定问题拉(压)超静定问题拉压杆超静定PPT课件4联立求解,得到联立求解,得到讨论:当讨论:当E1=E2,A1=A2时时2-7 2-7 拉(压)超静定问题拉(压)超静定问题拉压杆超静定PPT课件解解: 画画A结点受力图,建立平衡方结点受力图,建立平衡方程程F未知力未知力2 2个,平衡方程个,平衡方程1 1个,为一次超静定。个,为一次超静定。 例例2-172-17 结构如图结构如图,F解超静定问题的关键是找出求解所有未知解超静定问题的关键是找出求解所有未知约束反力所缺少的补充方程。结构变形后约束反力所缺少的补充方程。结构变形后各部分间必须象原来一样完整、连续、满各部分间必须象原来一样完整、连续、满足约束条件足约束条件-即满足变形相容条件。即满足变形相容条件。A123A在在F力作用下,力作用下,求各杆内力。求各杆内力。1、2杆抗拉刚度为杆抗拉刚度为xy拉压杆超静定PPT课件A2133)代入物理关系,建立补充方程)代入物理关系,建立补充方程2)如图三杆铰结,画)如图三杆铰结,画A节点位移图节点位移图,列出变形相容条件。要注意所设的列出变形相容条件。要注意所设的变形性质必须和受力分析所中设定变形性质必须和受力分析所中设定的力的性质一致。由对称性知的力的性质一致。由对称性知拉压杆超静定PPT课件4)联立)联立、求解:求解:2-7 2-7 拉(压)超静定问题拉(压)超静定问题拉压杆超静定PPT课件 例例2-2-18181)变形相容条件)变形相容条件: 图示结构,各杆图示结构,各杆EAEA不同列出求解该结构杆静力平衡不同列出求解该结构杆静力平衡方程和相容方程。方程和相容方程。ABCDPL123解解:本题为一次超静定本题为一次超静定用几何法分析变形用几何法分析变形Acb设设A A点横移(左、右任选)、点横移(左、右任选)、设右移设右移a图中几何关系:图中几何关系:AaAcac且:且: ac=2bc故:故:Aa=Ac2bc即:即:2-7 2-7 拉(压)超静定问题拉(压)超静定问题拉压杆超静定PPT课件2)物理方程)物理方程3)平衡方程:)平衡方程:把物理方程代入变形把物理方程代入变形相容方程相容方程可求得用内力表示的可求得用内力表示的相容方程相容方程。须注意各杆内力应与所设变形一致须注意各杆内力应与所设变形一致取节点取节点A研究研究:2-7 2-7 拉(压)超静定问题拉(压)超静定问题拉压杆超静定PPT课件ABCDPL123Aba图中图中1 1,2 2杆伸长,对应为杆伸长,对应为拉力,拉力,3 3杆缩短,应对应杆缩短,应对应为压力。为压力。xyAPFN1FN2 FN32-7 2-7 拉(压)超静定问题拉(压)超静定问题拉压杆超静定PPT课件 例例2-192-19(1)(1)建立坐标系建立坐标系DABC刚体xyz桌腿下部四个端点坐标是桌腿下部四个端点坐标是(2)(2)平衡方程平衡方程(3)(3)变形相容方程变形相容方程-四点共平面四点共平面FRARBRCRD 桌腿间距桌腿间距2aa2aa,高为,高为h h的长方桌,在对角线的的长方桌,在对角线的1/41/4处受处受力力F F作用作用( (如图如图),),求出桌腿所受的力。求出桌腿所受的力。2-7 2-7 拉(压)超静定问题拉(压)超静定问题拉压杆超静定PPT课件展开后得几何方程展开后得几何方程1+ 3=2+ 4(4) (4) 物理方程物理方程、式联立求解:式联立求解:RA=RC=F/4, RB=0, RD=F/2拉压杆超静定PPT课件 例例2-202-20刚性梁刚性梁ADAD由由1 1、2 2、3 3杆悬挂,已知三杆材料杆悬挂,已知三杆材料相同,许用应力为相同,许用应力为 ,材料的弹性模量为,材料的弹性模量为 E E,杆长,杆长均为均为l l,横截面面积均为,横截面面积均为A A,试求结构的许可载荷,试求结构的许可载荷PP2-7 2-7 拉(压)超静定问题拉(压)超静定问题拉压杆超静定PPT课件解:静力平衡条件:解:静力平衡条件:变形协调条件:变形协调条件:代入物理方程:代入物理方程:2-7 2-7 拉(压)超静定问题拉(压)超静定问题拉压杆超静定PPT课件三三. .装配应力装配应力 例例2-212-21装配应力如图结构,装配应力如图结构,中间杆短中间杆短h,h,求装配后内力。求装配后内力。解:静力平衡条件:解:静力平衡条件:变形协调条件:变形协调条件:引用胡克定律:引用胡克定律:2-7 2-7 拉(压)超静定问题拉(压)超静定问题拉压杆超静定PPT课件拉压杆超静定PPT课件 例例2-2-22221 1)画受力图)画受力图, ,写静力平衡方程写静力平衡方程 三个杆受力如图,列出平衡方程变形相容条件三个杆受力如图,列出平衡方程变形相容条件解解: :F213AabLBC2 2)画变形图,找变形相容条件)画变形图,找变形相容条件F变形以后三杆的端点仍共直线。变形以后三杆的端点仍共直线。三杆下端坐标为三杆下端坐标为 (-a,L+L(-a,L+L3 3),(0,L+L),(0,L+L2 2+ + ),(b,L+L),(b,L+L1 1) )得到得到: b(: b(LL3 3-L-L2 2- -)=a(L)=a(L2 2+ +- -LL1 1) )刚体yxABC建立坐标系建立坐标系, ,拉压杆超静定PPT课件四四. .温度应力温度应力 超静定问题中有了多余约束限制了杆温度变化所引起的变形,超静定问题中有了多余约束限制了杆温度变化所引起的变形,从而在杆中产生内力。这种内力产生的应力则称为温度应力从而在杆中产生内力。这种内力产生的应力则称为温度应力。 例例2-232-23图示的等直杆图示的等直杆AB的两端分别与刚性支承连接。的两端分别与刚性支承连接。设两支承间的距离设两支承间的距离(即杆长即杆长)为为L,杆的横截面面积为杆的横截面面积为A,材料的弹性模量为材料的弹性模量为E,线膨,线膨胀系数为胀系数为,试求温度升高,试求温度升高t时杆内的温度应力。时杆内的温度应力。解:温度升高以后,杆将自由地伸长解:温度升高以后,杆将自由地伸长(图图b)。现因刚性支承。现因刚性支承B的的阻挡,使杆不能伸长,相当于在杆的两端加了压力而将杆顶住。阻挡,使杆不能伸长,相当于在杆的两端加了压力而将杆顶住。由平衡方程可知两端的轴向压力相等,而压力的大小仍不知道。由平衡方程可知两端的轴向压力相等,而压力的大小仍不知道。 变形几何方程变形几何方程L=Lt - LF F=02-7 2-7 拉(压)超静定问题拉(压)超静定问题拉压杆超静定PPT课件物理方程物理方程计算表明,在超静定结构中,温度应力是一个不容忽视的因素。计算表明,在超静定结构中,温度应力是一个不容忽视的因素。在铁路钢轨接头处,以及混凝土路面中,通常都留有空隙;高温在铁路钢轨接头处,以及混凝土路面中,通常都留有空隙;高温管道隔一段距离要设一个弯道,都为考虑温度的影响,调节因温管道隔一段距离要设一个弯道,都为考虑温度的影响,调节因温度变化而产生的伸缩。如果忽视了温度变化的影响,将会导致破度变化而产生的伸缩。如果忽视了温度变化的影响,将会导致破坏或妨碍结构物的正常工作。坏或妨碍结构物的正常工作。 说明原先认为杆受轴向压力是对的,该杆的温度应力为压应说明原先认为杆受轴向压力是对的,该杆的温度应力为压应力。若杆为钢杆,其力。若杆为钢杆,其 =1.210 =1.210-5-5/()/(),E E=210GPa=210GPa,则当温度,则当温度升高升高t= 40t= 40时,杆内的温度应力上式算得时,杆内的温度应力上式算得由此得温度应力为由此得温度应力为 = FN/A=Et=Et =100106Pa =100 Mpa (压应力压应力)拉压杆超静定PPT课件 例例2-232-23温度应力:如图所示,温度应力:如图所示,钢柱与铜管等长为,置于二钢柱与铜管等长为,置于二刚性平板间刚性平板间, ,受轴向压力受轴向压力. .钢钢柱与铜管的横截面积、弹性模柱与铜管的横截面积、弹性模量、线膨胀系数分别为量、线膨胀系数分别为s s、s s、ss,及,及c c、c c、cc。试。试导出系统所受载荷仅由铜管导出系统所受载荷仅由铜管承受时,所需增加的温度承受时,所需增加的温度。(二者同时升温)(二者同时升温)CL2TU22解:变形协调条件为铜管伸解:变形协调条件为铜管伸长等于钢柱伸长,即长等于钢柱伸长,即拉压杆超静定PPT课件五五. . 拉(压)杆超静定问题解法的讨论拉(压)杆超静定问题解法的讨论 解解拉(压)超静定问题必须正确地画出结构的变形图,拉(压)超静定问题必须正确地画出结构的变形图,然后分析结构特点,找出结构变形前后的不变量或者等量然后分析结构特点,找出结构变形前后的不变量或者等量关系,再用数学方法刻画它关系,再用数学方法刻画它, ,从而给出补充方程。观察问从而给出补充方程。观察问题的角度不同所采用的方法也会有很大差异。同一题,不题的角度不同所采用的方法也会有很大差异。同一题,不同的解法难、易、繁、简也相去甚远。我们必须仔细分析同的解法难、易、繁、简也相去甚远。我们必须仔细分析找出最恰当的办法来。找出最恰当的办法来。1.1.比较变形法比较变形法 常用于结构较为简单,一些特定节点位移已知且计算常用于结构较为简单,一些特定节点位移已知且计算也较为简单的问题。也较为简单的问题。2. 几何法分析变形几何法分析变形 是求解超静定杆系的基本方法,常用于各杆的变形关是求解超静定杆系的基本方法,常用于各杆的变形关系较为简单,超静定次数较低的杆系的求解。但是,一系较为简单,超静定次数较低的杆系的求解。但是,一般情况下分析变形寻找等量关系较为困难。要注意利用般情况下分析变形寻找等量关系较为困难。要注意利用对称与反对称关系对称与反对称关系。拉压杆超静定PPT课件对称与反对称的利用对称与反对称的利用123LaaABC例如:三根杆例如:三根杆EAEA相同,求杆的内力。相同,求杆的内力。解:本题可将荷载解:本题可将荷载P向向C点平移点平移123Laa刚体PABCPPA123LaaB123LaaABMC正对称正对称反对称反对称PMPMCMC2MC2正对称部分正对称部分N1N3N2反对称部分反对称部分N1N2=0N1拉压杆超静定PPT课件3.解析法分析变形解析法分析变形如下非对称问题也可以转化为对称与反对称问题。如下非对称问题也可以转化为对称与反对称问题。F213AFyFx=213A213AFy+对于变形较为复杂,几何分析较为困难的问题可以把结对于变形较为复杂,几何分析较为困难的问题可以把结构放到坐标系中,给出变形后各节点的坐标。根据约束构放到坐标系中,给出变形后各节点的坐标。根据约束条件,就重要节点的共线、共面、共圆以及直线和圆的条件,就重要节点的共线、共面、共圆以及直线和圆的共点等特征,用解析几何的方法刻画变形相容关系。共点等特征,用解析几何的方法刻画变形相容关系。Fx/2Fx/2拉压杆超静定PPT课件(2)三角形的面积关系)三角形的面积关系:(1)变形相容方程:以如图不对称结构为例,各点座标为:以如图不对称结构为例,各点座标为:AO(xo,yo),B(xB,yB),C(xC,yC),D(xD,yD)+=AAODBCAO、B 、 C 、D点共圆D0C0B0ab213Lxy拉压杆超静定PPT课件5. 用能量法解超静定问题用能量法解超静定问题6.6.有限元有限元法解超静定问题法解超静定问题对一些结构超静定次数很高的结构,只有借助有限对一些结构超静定次数很高的结构,只有借助有限元法利用计算机进行计算。这要等到以后再继续学元法利用计算机进行计算。这要等到以后再继续学习这方面的内容。习这方面的内容。4.4.比拟法比拟法可以把桌子腿受力问题比可以把桌子腿受力问题比拟成合质量与质心坐标已拟成合质量与质心坐标已知,求四个位置上质点的知,求四个位置上质点的质量分布问题(如图)。质量分布问题(如图)。FG较为复杂的结构用能量法求解就会稍微容易些由于各较为复杂的结构用能量法求解就会稍微容易些由于各杆的内力与变形方向一致杆的内力与变形方向一致, ,所以各杆的内力功之和必等所以各杆的内力功之和必等于外载荷所做的功于外载荷所做的功, ,补充方程为补充方程为: :mAmCmBmDOABDC拉压杆超静定PPT课件5. 用能量法解超静定问题用能量法解超静定问题作业:作业:2-24,6-1,6-2,6-46.6.有限元有限元法解超静定问题法解超静定问题对一些结构超静定次数很高的结构,只有借助有限对一些结构超静定次数很高的结构,只有借助有限元法利用计算机进行计算。这要等到以后再继续学元法利用计算机进行计算。这要等到以后再继续学习这方面的内容。习这方面的内容。4.4.比拟法比拟法可以把桌子腿受力问题比可以把桌子腿受力问题比拟成合质量与质心坐标已拟成合质量与质心坐标已知,求四个位置上质点的知,求四个位置上质点的质量分布问题(如图)。质量分布问题(如图)。FG较为复杂的结构用能量法求解就会稍微容易些由于各较为复杂的结构用能量法求解就会稍微容易些由于各杆的内力与变形方向一致杆的内力与变形方向一致, ,所以各杆的内力功之和必等所以各杆的内力功之和必等于外载荷所做的功于外载荷所做的功, ,补充方程为补充方程为: :mAmCmBmDOABDC拉压杆超静定PPT课件谢谢 谢谢 大大 家家 !拉压杆超静定PPT课件
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号