资源预览内容
第1页 / 共7页
第2页 / 共7页
第3页 / 共7页
第4页 / 共7页
第5页 / 共7页
第6页 / 共7页
第7页 / 共7页
亲,该文档总共7页全部预览完了,如果喜欢就下载吧!
资源描述
听课记录 科目 数学 课题 二次函数与一元二次方程的关系 授课教师 班级 听课时间 2019 年 月 日 第 节 听课人 向中伟 教学内容 一、情境导入,初步认识 1.一元二次方程 ax2+bx+c=0 的实数根,就是二次函数 y=ax2+bx+c,当 y=0 时,自变量 x 的值,它是二次函数的图象与 x 轴交点的 横坐标 . 学生回答,教师点评 二、思考探究,获取新知 探究 1 求抛物线 y=ax2+bx+c 与 x 轴的交点 例 1 求抛物线 y=x2-2x-3 与 x 轴交点的横坐标. 探究 2 抛物线与 x 轴交点的个数与一元二次方程的根的个数之间的关系思考: (1)你能说出函数 y=ax2+bx+c(a0)的图象与 x 轴交点个数的情况吗?猜想交点个数和方程 ax2+bx+c=0(a0)的根的个数有何关系? (2)一元二次方程 ax2+bx+c=0(a0)的根的个数由什么来判断? 探究 3 利用函数图象求一元二次方程的近似根 提出问题:同学们可以估算下一元二次方程 x2-2x-2=0 的两根是什么? 三、运用新知,深化理解 1.(广东中山中考)已知抛物线 y=ax2+bx+c 的图象如图所示,则关于 x 的方程 ax2+bx+c=0的根的情况是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C.有两个同号的实数根 D.没有实数根 四、师生互动,课堂小结 1.这节课你学到了什么?还有哪些疑惑? 1.教材 P28第 13 题. 2.完成同步练习册中本课时的练习. 评价及建议 听课记录 科目 数学 课题 分式的乘除 授课教师 班级 听课时间 2019 年 月 日 第 节 听课人 向中伟 教学内容 一、课堂引入 计算(1))(xyyxxy (2) )21()3(43xyxyx 二、例题讲解 (P17)例 4.计算 (补充)例.计算 (1)4(3)98(23232bxbaxyyxab =xbbaxyyxab34)98(23232 (先把除法统一成乘法运算) =xbbaxyyxab349823232 (判断运算的符号) =32916axb (约分到最简分式) 三、随堂练习 计算 (1)2(216322baabcab (2)103326423020)6(25baccabbac 四、课后练习 计算 (1)6(4382642zyxyxyx (2)9323496222aababaa 评价及建议 听课记录 科目 数学 课题 分式方程 授课教师 班级 听课时间 2019 年 月 日 第 节 听课人 向中伟 教学内容 一、课堂引入 1回忆一元一次方程的解法,并且解方程163242xx 2提出本章引言的问题: 一艘轮船在静水中的最大航速为 20 千米/时,它沿江以最大航速顺流航行 100 千米所用时间,与以最大航速逆流航行 60 千米所用时间相等,江水的流速为多少? 二、例题讲解 (P34)例 1.解方程 (P34)例 2.解方程 三、随堂练习 解方程 (1)623xx (2)1613122xxx (3)114112xxx (4)22122xxxx 四、课后练习 1解方程 (1) 01152xx (2) xxx38741836 (3)01432222xxxxx (4) 4322511xx 2X为何值时,代数式xxxx231392的值等于 2? 评价及建议 听课记录 科目 数学 课题 勾股定理的逆定理 授课教师 班级 听课时间 2019 年 月 日 第 节 听课人 向中伟 教学内容 四、课堂引入 创设情境:怎样判定一个三角形是等腰三角形? 怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比, 从勾股定理的逆命题进行猜想。 五、例习题分析 例 1(补充)说出下列命题的逆命题,这些命题的逆命题成立吗? 同旁内角互补,两条直线平行。 如果两个实数的平方相等,那么两个实数平方相等。 线段垂直平分线上的点到线段两端点的距离相等。 直角三角形中 30角所对的直角边等于斜边的一半。 例 2(P82 探究)证明:如果三角形的三边长 a,b,c 满足 a2+b2=c2,那么这个三角形是直角三角形。 分析:注意命题证明的格式,首先要根据题意画出图形,然后写已知求证。 如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角。 六、课堂练习 1判断题。 在一个三角形中,如果一边上的中线等于这条边的一半,那么这条边所对的角是直角。 命题: “在一个三角形中,有一个角是 30,那么它所对的边是另一边的一半。 ”的逆命题是真命题。 勾股定理的逆定理是:如果两条直角边的平方和等于斜边的平方,那么这个三角形是直角三角形。 七、课后练习, 1叙述下列命题的逆命题,并判断逆命题是否正确。 如果 a30,那么 a20; 如果三角形有一个角小于 90,那么这个三角形是锐角三角形; 如果两个三角形全等,那么它们的对应角相等; 关于某条直线对称的两条线段一定相等。 评价及建议 听课记录 abcabBCAA1C1B1 科目 数学 课题 等腰三角形 授课教师 李琼芳 班级 132 听课时间 2019 年 11 月 12 日 第 1 节 听课人 向中伟 教学内容 一、回顾.提问:轴对称图形的定义、垂直平分线的定义、性质、判定. 二、新授课 1、 请同学们翻开课本 P75,完成课本上的探究. 1) 检查同学们的完成情况; 2) 教师口头讲解探究过程; 3) 提问:折完后,可以得到哪些信息?(如图 1) 得到:ABDACD AB=CD B=C BD=CD 1=2 ADB=ADC=90 最终引出等腰三角形“三线合一”的性质. 板书:性质 1:等边对等角 性质 2:三线合一 强调“三线合一”的“三线”是顶角的角平分线、底边上的中线、底边上的高.举反例:折底角的角分线,说明等腰三角形其他边上的三线不重合. 4) 证明性质 1. 教师引导学生写出已知、求证后,学生分组分别添加三种辅助线来证明性质 1. 三位学生上台板书,教师简单点评,重点讲解添加高线的证明方法. 5) 证明性质 2. 教师口述证明过程. 三、例题讲解 已知:如图 2,在ABC 中,AB=AC,ADBC 于点 D 求证:BE=CE 利用性质 2 的证明步骤. 四、作业布置 评价及建议 一、课本的探究简单易行,课堂上探究部分主要由学生完成,充分发挥了学生的主动性.利用轴对称、全等的知识顺理成章完成等腰三角形性质的探究,完成了知识的过渡,也让学生认识到轴对称是一个很有效的研究工具. 二、由学生根据所折图形得到的信息,引出等腰三角形“三线合一”的性质,这一过程自然连贯,学生容易接受.同时,所举的反例十分直观,加深了学生对等腰三角形这一性质的理解. 三、性质 1 的证明过程中,三种添加辅助线的方法均有涉及,重点讲解添加高线的方法,详略得当. 四、性质 2 的证明可以认为是性质 1 证明的延续,不是本节课的重点.本堂课对这部分内容采取简单口头讲解的方式,既节省了时间,又避免了重复. 听课记录 图 1 科目 数学 课题 授课教师 班级 听课时间 2019 年 月 日 第 节 听课人 向中伟 教学内容 评价及建议
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号