资源预览内容
第1页 / 共54页
第2页 / 共54页
第3页 / 共54页
第4页 / 共54页
第5页 / 共54页
第6页 / 共54页
第7页 / 共54页
第8页 / 共54页
第9页 / 共54页
第10页 / 共54页
亲,该文档总共54页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
第七章 多方案评价第一节第一节 多方案之间的相互关系多方案之间的相互关系第二节第二节 互斥型方案的选择互斥型方案的选择第三节 独立型方案的选择独立型方案的选择第四节第四节 混合型方案的选择混合型方案的选择第五节第五节 多方案选择的数学模型多方案选择的数学模型第一节 多方案之间的相互关系多方案之间的相互关系l互斥型方案l独立型方案 l混合型方案 l相关型方案 一、互斥型方案l在多方案评价中,互斥型方案是最常见的,互斥型方案的特点是在若干个备选方案中只能选择其中一个方案。如:项目生产规模的确定、厂址的选择、设备选型、某种产品的生产工艺流程、某个装置的技术改造方案等,在项目评价中可以提出很多可供选择的方案,但在最终决策中只能选择其中一个最优方案。二、独立型方案l独立型方案是指在多方案评价中,若干个备选方案彼此互不相关,相互独立。选择其中一个方案,并不排斥选择其他方案。如:某公司在一定时间内有如下投资意向,增加一套生产装置,扩建办公楼,对现有装置进行节能降耗,更换污水处理装置等。这些项目相互独立,互不相关,如果资金预算能满足需要,只要项目可行,均可以实施。因此,独立型方案的选择问题是在一定的资源约束条件下,以寻求经济效益最优的项目集合。三、混合型方案l混合型方案是指多个投资方案之间既有互斥关系,又相互独立。一般是同类方案之间彼此互斥,不同类方案之间相互独立。如某公司有如下投资方案:增建一台锅炉,但在市场上有三种型号的锅炉可供选用;建设一座冷藏库,绝热层壁厚有四种设计方案;更换一台反应器中的催化剂,现有两种催化剂可供选用。此时,同类方案之间彼此互斥,如锅炉的选型等。不同类方案之间相互独立,即增建锅炉、建设冷藏库、更换催化剂这三类投资方案彼此互不相关,相互独立。最终要在一定的资金约束条件下,以寻求经济效益最优的项目集合,即AiBjCk。 四、相关型方案l相关型方案是指多个投资方案之间存在一定的关联性,如互补型方案、依赖型方案等。互补型方案是指多个投资方案之间存在互补关系,如园林景观工程与周边地区的房地产项目,景观工程将使周边地区的房地产项目增值。采用先进的生产工艺将减少对环境影响,从而将减少环保工程投资等。依赖型方案是指多个投资方案之间在功能上或经济上存在一定的相互依赖关系,如在煤矿附近投资建设大型火力发电厂,发电厂的建设规模有赖于煤矿的生产能力,同样乙烯工程项目的建设与炼油工程项目相互依赖,密切相关。相关型方案在多方案评价中,只需将其作为约束条件既可,在选择方法上不作专门阐述。第二节第二节 互斥型方案的选择互斥型方案的选择一、互斥型方案的评价指标二、 菲希尔交点三、互斥型方案的选择方法 四、设备更新案例分析一、互斥型方案的评价指标一、互斥型方案的评价指标例例7-17-1 某公司有如下三个互斥型方案,项目计算期均为10年,基准贴现率为10%,三个方案的净现值及内部收益率如表7-1所示:方案方案 初始投资初始投资/万元万元 年净收益年净收益/(万元(万元/年)年) NPV/万元万元 IRRA 10 3.2 9.66 32%B 20 5.2 11.95 26%C 30 6.2 8.10 21%互斥型方案的评价指标一般应选择如下差额指标互斥型方案的评价指标一般应选择如下差额指标l对于效益型的投资方案,则应选择效益指标:净现值(NPV)或净年金(NAV)等最大的方案。l对于费用型的投资方案,则应选择费用指 标 : 费 用 现 值 ( PC) 或 费 用 年 值(AC)最小的方案。二、菲希尔交点二、菲希尔交点 菲希尔交点是指两方案NPV(i)曲线的交点。若基准贴现率为该交点所对应的贴现率rf,则两方案的净现值相等。iNPVrfIRRBIRRA在在例例7-17-1中中,A A方方案案和和B B方方案案的的菲菲希希尔尔交交点点所所对对应应的的贴现率贴现率r rf f计算如下:计算如下:A A方案和方案和B B方案的净现值为:方案的净现值为:NPVNPVA A(i i)= 3.2= 3.2(P/A(P/A,i i,10)10)1010NPVNPVB B(i i)= 5.2= 5.2(P/A(P/A,i i,10)10)2020令令NPVNPVA A(i i)= = NPVNPVB B(i i),则则解解得得i i =15.1%=15.1%,即即两两方方案案的的菲菲希希尔尔交交点点所所对对应应的的贴贴现现率率r rf f=15.1%=15.1%,而而例例7-7-1 1中中给给出出的的基基准准贴贴现现率率i=10%i=10%,根根据据图图7-17-1所所示示,当当基基准准贴贴现现率率i ir rf f时时,两两方方案案采采用用净净现现值值指指标标排排序序与与采采用用内内部部收收益益率率指指标标排排序序的的结结论论相相反反,符符合合表表7-17-1所所得得结结论论。而而当当基基准准贴贴现现率率i ir rf f时时,两两方方案案采采用用净净现现值值指标排序与采用内部收益率指标排序的结论一致。指标排序与采用内部收益率指标排序的结论一致。三、互斥型方案的选择方法三、互斥型方案的选择方法(一)项目计算期相同的方案选择l1、直接选择法l首先排除不能满足资源约束的备选方案,再计算满足资源约束的所有备选方案的差额评价指标。l对于效益型的投资方案,则应选择效益指标:净现值(NPV)或净年金(NAV)等最大的方案。l对于费用型的投资方案,则应选择费用指标:费用现值(PC)或费用年值(AC)最小的方案。2、差额现金流量法l差额现金流量法是指在进行多方案比较时,将方案按投资从小到大排序,再依次就相邻方案两两比较,将高投资方案的净现金流量减去低投资方案的净现金流量,构成所谓差额现金流量。根据差额现金流量计算经济效益评价指标,即差额净现值或差额内部收益率。如果根据所计算的评价指标判断,差额现金流方案可行,即差额净现值大于0或差额内部收益率大于基准贴现率,则说明高投资方案优于低投资方案,反之,低投资方案优于高投资方案。经过一一比选,最终确定最优投资方案。l 差额现金流量法选择方案差额现金流量法选择方案l根据例7-1中所给数据,将方案按投资从小到大排序,并得出相应的差额现金流量如下(单位:万元):l 3.20=3.2 A0方案: t(年) 100=10 l 图7-2 A0方案的差额现金流量图l计算差额净现值计算差额净现值NPVNPVA A0 0(10%10%)= 3.2(P/A= 3.2(P/A,10%10%,10)10)10 10 l = 9.66 = 9.66(万元)万元)因为差额净现值因为差额净现值NPVNPVA A0 0(10%10%)0 0,所以,所以,A A方案优于方案优于0 0方案(不投资方案)方案(不投资方案),即,即A A方案可行。方案可行。 l在A方案的基础上,追加投资10万元,即可投资B方案,两方案的差额现金流量如图73所示。 l 5.23.2=2 B-A方案: t(年) 2010=10 l 图7-3 B-A方案的差额现金流量图l计算差额净现值NPVBA(10%)= 2(P/A,10%,10)10 l = 2.29(万元)l因为差额净现值NPVBA(10%)0,说明追加投资方案可行。l所以,高投资方案优于低投资方案,即B方案优于A方案。 l同理,在B方案的基础上,再追加投资10万元,即可投资C方案,两方案的差额现金流量如图74所示。l 6.25.2=1 lC-B方案: t(年) 3020=10 l 图7-4 C-B方案的差额现金流量图l计算差额净现值NPVCB(10%)= 1(P/A,10%,10)10l = -3.86(万元)l因为差额净现值NPVCB(10%)0,说明追加投资方案不可行。l所以,低投资方案优于高投资方案,即B方案优于C方案。l通过上述差额现金流量法,将所有互斥型方案一一比选,最终结论与直接选择法相同,即最优投资方案为B方案。(二)项目计算期不同的方案选择1、重复更新假设 所谓重复更新假设是指所有投资方案的现金流,可以按相同条件不断复制更新。这样就可以将项目计算期不同的方案,根据所有方案计算期的最小公倍数,将其现金流按相同条件不断重复更新,最终将所有进行比选的方案均按相同期限(所有方案计算期的最小公倍数)计算其经济效益评价指标。 2、再投资假设 由于在对项目计算期不同的方案进行比选时,很难估算计算期较短的方案,从其现金流终止到计算期较长的方案现金流终止期间的现金流状况。再投资假设认为可以假设,将计算期较短的方案在其项目计算期内产生的净现金流以基准贴现率进行再投资,再投资的期限为计算期较长的方案现金流终止期,这样两方案的计算期就相同了,再计算每个方案的经济效益评价指标进行方案比选。1、重复更新假设例题:某厂设备更新(产量相同,收入可省略)考虑了两个方案,试按基准贴现率i=15%,确定采用哪个方案。 项 目 方案A 方案B初期投资(万元) 10000 16000年经营成本(万元) 3400 3000残值(万元) 1000 2000寿命期(年) 6 9解:1、计算期不同,求出最小公倍数18年;2、绘出现金流图A方案:01612183400100010001000年100001000010000160001600001918300020002000年B方案:3、费用现值法PC :简单起见,因大多数为费用,费用为正,收入按负值处理。4、年金法5、计算各方案原计算期内的净年金四、设备更新案例分析l例例7-4 某仓库内现有搬运设备已经陈旧,故障时有发生,影响正常作业。现要研究维修或更换的方案。lA、修理方案:修理费700万元,修理后预计使用3年,年经营费用为400万元。lB、更换成简易运输设备:初始投资2500万元,年经营费用为820万元,预计使用10年。lC、更换成正式运输设备:初始投资3200万元,年经营费用为560万元,预计使用15年。l假如现在采用A方案,随后也要再考虑采用B方案或C方案。如果现在就更换成新设备,旧设备的处理价为600万元,如果使用3年后处理,则处理收入为0。另外,假定B、C两种设备在预计使用寿命之后的残值为0。l试分析该公司应采取什么更新方案(基准贴现率i=6%)?l解解:设备更新问题属于典型的互斥型方案的选择问题,根据案例背景分析,若立即更新,可以选择更换成简易运输设备(B方案)或更换成正式运输设备(C方案)。如采用修理方案(A方案),随后也要再考虑采用B方案或C方案。因此本案例共包含四个互斥型方案,即B方案、C方案、AB方案和AC方案。首先分析B方案和C方案,分析过程如下(单位:万元):25003200820560 001212315.B方案C方案根据项目计算期不同的互斥型方案选择方法(一般均以重复更新假设为条件),采用年金法进行比较。两方案的费用年值计算如下: ACB = 8202500(A/P,6%,10) = 1160万元/年ACC = 5603200(A/P,6%,15) = 889.5万元/年 因为ACCACB,所以,C方案优于B方案。因此也可以推定AC方案优于AB方案,只要再比较C方案和AC方案的优劣即可。 310AC方案的现金流图如下:600+7004003200560012345618.A方案投资包括修理费700万元和立即更新时旧设备的处理收入600万元(继续使用旧设备的机会成本或从第三方评价角度理解为旧设备的购置费)。经与C方案的现金流图比较发现,若计算期趋于无穷(C方案可重复更新),则AC方案与C方案只在前三年存在差异,三年后两方案的费用年值完全相同(为ACC)。因此只需比较两方案前三年的费用年值即可。计算如下:ACA = 400(600700)(A/P,6%,3) = 886.3万元/年ACC = 5603200(A/P,6%,15) = 889.5万元/年因为ACAACC,所以,AC方案优于C方案,两方案相比,在前三年中每年可节约费用:889.5886.3=3.2万元/年,三年后两方案相同。因此,该公司应采用延迟更新方案,将旧设备修理使用三年后,再更换成正式运输设备。第7.3节独立型方案的选择独立型方案的选择l7.3.1独立型方案的选择方法与评价指标独立型方案的选择方法与评价指标l7.3.2效率型指标排序法案例分析效率型指标排序法案例分析第三节 独立型方案的选择独立型方案的选择一、独立型方案的选择方法与评价指标一、独立型方案的选择方法与评价指标1 1、穷举法、穷举法l穷举法也称构造互斥型方案法。就是将所有备选的独立型方案的净现值计算出来,在排除了不可行方案后,对所有可行方案进行任意组合,所有方案组合均不相同,彼此互斥,在确定了所有方案组合后,排除其中超过资源约束的方案组合,再计算满足所有约束条件的方案组合的净现值之和,净现值之和最大的方案组合即为我们寻求的经济效益最优的项目集合。例如:当有A、B、C、D四个相互独立的方案进行方案选择时,按穷举法可提出的所有不同的方案组合有:0、A、B、C、D、AB、AC、AD 、BC、BD、CD、ABC、ABD、ACD、BCD、ABCD,共计16种。这就相当于构造了16个互斥型方案,在排除了不可行及超约束的方案后,净现值之和最大的方案组合即为我们寻求的经济效益最优的项目集合。 例例7-57-5 某企业现有三个独立的投资方案A、B、C,其初始投资及各年净收益如表7-3所示。总投资限额为8000万元。基准贴现率为10%,试选择最优投资方案组合。表7-3 各方案经济数据投资方案第0年末投资(万元)年净现金流(万元)计算期(年)A20004608B30006008C50009808解:穷举法各方案的净现值分别为方案A:NPVA=-2000+460(P/A,10%,8) =-2000+4605.3349=454.05(万元)方案B:NPVB=-3000+600(P/A,10%,8) =-3000+6005.3349=200.94(万元)方案C:NPVC=-5000+980(P/A,10%,8) =-5000+9805.3349=228.20(万元)以上三个方案均可行,列出所有的投资方案组合及其净现值,见表7-4。 表7-4 各投资方案组合及其净现值根据表7-4的计算结果可知,在满足8000万元资金约束下,第6组净现值之和最大,为最优的投资组合,故该企业在8000万元资金约束下,应选择A方案和C方案为最优投资方案组合。组号方案组合投资额(万元)是否满足资金约束净现值(万元)100是02A2 000是454.053B3 000是200.944C5 000是228.205AB5 000是654.996AC7 000是682.257BC8 000是429.148ABC10 000否2、效率型指标排序法 效率型指标排序法是一种简单快速寻求经济效益最优的方案集合的方法。具体做法是首先选定并计算方案排序所需的效率型指标,即单位资源所产生的经济效益目标值。如内部收益率、投资利润率、单位时间盈利率、单台设备盈利率等。然后按照每个方案的效率指标从高到低排序,直到满足资源约束条件为止。采用此方法时,要注意以下三个问题:(1 1)必必须须实实施施的的方方案案(一一般般称称为为不不可可避避免免费费)不不论论其其效效率率指指标标高高低低,在在方方案案排排序序时时必必须须将将其其排排在在第第一一位位。然然后后再再按按照照其其余余方方案案的的效效率率指指标标从从高高到到低低排排序序,直直到到满满足足资资源源约约束束条条件件为为止止。这这样样既既可可以以保保证证该该方方案案的的实实施施,同同时时能能确确保保剩剩余余资资源源产产生生的的经经济济效益最大化。效益最大化。(2)在投资方案选择中,通过基准贴现率排除不可行方案。即当投资方案的)在投资方案选择中,通过基准贴现率排除不可行方案。即当投资方案的IRRi时,即使资金预算能满足该方案的投资需要,也要将该方案排除。时,即使资金预算能满足该方案的投资需要,也要将该方案排除。 (3)在投资方案选择中,如果资金约束不能满足某个方案的投资需要,而项目建设)在投资方案选择中,如果资金约束不能满足某个方案的投资需要,而项目建设是个整体,不可分离,这就是所谓不可分方案问题。此时为了保证所选方案组合是经是个整体,不可分离,这就是所谓不可分方案问题。此时为了保证所选方案组合是经济效益最优的项目集合,必须对方案进行适当的前后比较。济效益最优的项目集合,必须对方案进行适当的前后比较。 二、效率型指标排序法案例分析例例7-67-6 某公司有数台大型模压机,都可以生产A、B、C、D四种产品。对于任何一种产品来说,其产量可以认为是无限的。但每个月这些机器的可用生产时间总共是2000小时,其他各种数据如表75所示:表7-5 生产各种产品的经济数据产品ABCD售价(元/个)76094010001300材料及加工费(元/个)300400650600正常生产耗时(小时/个)0.020.060.010.05最大售出量(个/月)40000200005000020000问题:1、公司为获得最大盈利,应采取何种生产方案?每月公司最大盈利为多少?2、如果该公司以B产品至少生产5000个为先决条件,应如何安排生产最有利?为保证这个先决条件所付出的代价是多少?解:本案例属于企业优化生产计划的问题,由于不同产品的生产彼此独立,互不相关,公司要在每月的生产时间(资源)约束条件下,进行不同产品生产量的决策,属于典型独立型方案的选择问题。下面按效率型指标排序法确定最优生产计划。1、首先计算每种产品在每月最大售出量时所需要的生产时间:A产品:400000.02=800小时B产品:200000.06=1200小时C产品:500000.01=500小时D产品:200000.05=1000小时总计:800小时1200小时500小时1000小时=3500小时若所有产品都按最大售出量安排生产,共需生产时间3500小时/月。但每个月机器的可用生产时间总共是2000小时。所以,时间资源满足不了生产所有产品的需要。 按照独立型方案的选择方法(效率型指标排序法),首先确定方案排序所需的效率指标,本案例应采用的评价指标为单位时间的盈利额,计算如下:A产品:(760300)/0.02=23000元/小时B产品:(940400)/0.06=9000元/小时C产品:(1000650)/0.01=35000元/小时D产品:(1300600)/0.05=14000元/小时按上述效率指标排序,见图7-10。50013002000 230035003500023000140009000t(小时)盈利/小时(元/小时) 图图7-10 7-10 生产方案排序图生产方案排序图CADB根据图7-10,若每月机器的可用生产时间为2000小时,则公司为获得最大盈利,应采取的生产方案为用500小时生产C产品,800小时生产A产品,700小时生产D产品。此时,每月公司最大盈利为:350005002300080014000700 = 4570万元/月2、如果该公司以B产品至少生产5000个为先决条件,即必须安排300小时(50000.06)生产B产品,这相当于独立型方案选择中的不可避免费。在方案排序时,首先将不可避免费方案排在第一位,剩余的资源再按评价指标从高到低进行方案排序,见图711。3008001600 20002600350090003500023000140009000 t(小时)盈利/小时(元/小时) 图7-11 不可避免费生产方案排序图 根据图7-11,若每月机器的可用生产时间为2000小时且以B产品至少生产5000个为先决条件,最优生产计划为:用300小时生产B产品,500小时生产C产品,800小时生产A产品,400小时生产D产品。与上述最优生产计划相比,为保证这个先决条件所付出的代价是(140009000)300 = 150万元/月。BCADB第四节第四节 混合型方案的选择混合型方案的选择l一、混合型方案的选择方法与评价指标 l二、案例分析 一、混合型方案的选择方法与评价指标l 混合型方案是指多个投资方案之间既存在互斥关系,又相互独立。一般是同类方案之间彼此互斥,不同类方案之间相互独立。 l1、穷举法l穷举法与独立型方案类似,只是在提出方案组合时,每一类方案在一种组合中只能出现一次。如:A1B1C1或A1B2C1、A2B2C1、A3B2C2、等等。在排除了超出资源约束的方案组合后,再计算满足约束条件的方案组合的净现值之和,最终选择净现值之和最大的方案组合(AiBjCk)作为我们寻求的经济效益最优的项目集合。2 2、差额效率型指标排序法、差额效率型指标排序法l 差额效率型指标排序法也是一种简单快速解决混合型方案择优的方法。此方法运用了差额现金流量法,首先将每类投资方案按投资从小到大排序,再依次就相邻方案两两比较,将高投资方案的净现金流量减去低投资方案的净现金流量,构成所谓差额现金流量。根据差额现金流量计算差额内部收益率(IRR),该指标既可以解决互斥型方案的选择问题,又因其为投资效率指标可以通过方案排序解决独立型方案集合最优问题。按照每类方案追加投资的差额内部收益率指标从高到低排序,直到满足资源约束条件为止。采用此方法时,要注意以下四个问题:(1)在计算追加投资的差额内部收益率时,要注意排除无资格方案。在同一类方案(如:A1、A2 、A3按投资从低到高排序)中,计算差额内部收益率时如发现,后边方案的差额内部收益率比前边方案的差额内部收益率高。即差额内部收益率IRR(A3A2)IRR(A2A1),当按照该指标从大到小排序,就会出现追加投资方案排在低投资方案之前的逻辑错误(追加投资方案必须排在低投资方案之后)。因此,必须将低投资方案作为无资格方案排除,具体分析过程见例7-7。(2)若规定某一类方案必须实施(如环保工程等),则不论其差额效率指标高低,在方案排序时必须将该类方案中投资最小的方案排在第一位,作为不可避免费。然后再按照其他追加投资方案的差额效率指标从高到低排序,直到满足资源约束条件为止。这样既可以保证不可避免费方案的实施,同时又能确保剩余资源产生的经济效益最大化。(3)在投资方案选择中,通过基准贴现率排除不可行方案。即当追加投资方案的IRRi时,则说明追加投资方案不可行,即低投资方案优于高投资方案,即使资金预算能满足该方案追加投资的需要,也要将该高投资方案排除。(4)在投资方案选择中,可能出现资金约束不能满足某个方案追加投资的需要,而该项目的追加投资不可分割,这也是我们面临的不可分方案问题。此时为了保证所选方案组合是经济效益最优的项目集合,必须对方案进行适当的前后比较,具体做法见例7-7。二、案例分析例例7-7 7-7 某综合性生产设备,由动力装置A、控制装置B、检查装置C及传送装置D四部分组成。因动力装置A与控制装置B密切相关,所以操作费用因组装不同而异。在生产设备组成中,动力装置与控制装置是系统必不可少的装置。其经济数据如表76及表77所示:表7-6 动力装置与控制装置各型号设备投资额设备型号A1A2A3B1B2投资额(万元)5001500300015002500表7-7 动力装置与控制装置各型号设备组合年费用组合年费用(万元/年)B1B2A120001500A216001400A311001000根据资金能力和经济性的考虑,检查装置C及传送装置D也可以不投资,而采用人工方式。其经济数据如表78及表79所示:表7-8 检查装置各型号设备投资额及年费用设备型号投资额(万元)年费用(万元/年)C00(人工方式)1000C11000600C22000390表7-9 传送装置各型号设备投资额及年费用设备型号投资额(万元)年费用(万元/年)D00(人工方式)500D1500350D21500300 假定各型号设备使用寿命很长(n),何种设备组合构成的设备系统生产产品的产量与质量水平相同。若投资预算在以下三种情况时,应如何设计设备组合最有利? (基准贴现率i=10%)(1) 无资金约束; (2) 6000万元; (3) 5000万元;解 此类问题是典型的混合型投资方案选择问题。目标是在一定的资金约束条件下,设计出一套最佳的设备组合。因此,同类型设备中只能选择一种型号的设备,为互斥型方案的选择问题,不同类型设备彼此独立,属于独立型方案的选择问题。按照混合型方案的选择方法分析如下:第一步,计算各方案追加投资的差额内部收益率。在计算差额内部收益率时,要注意排除无资格方案。若某类投资方案为必须投资方案,应将其最小投资方案作为不可避免费排在该类投资方案的第一位。详细计算结果见表710:表表7-10 7-10 三类方案追加投资的差额内部收益率三类方案追加投资的差额内部收益率方案投资额(万元)年费用(万元/年)节约额(万元)差额内部收益率A1 B120002000(不可避免费)A1 B23000150050050%A2 B130001600-100无资格方案A2 B24000140010010%(无资格方案)A3 B14500110040027%A3 B25500100010010%C001000(不可避免费)C1100060040040%C2200039021021%D00500(不可避免费)D150035015030%D21500300505% 差额内部收益率计算过程如下:首先将每类投资方案按投资额从小到大排序,因为动力装置与控制装置是系统必不可少的装置,所以A1 B1设备组合(该类投资方案中最小投资方案)作为不可避免费排在该类投资方案的第一位,必须投资。在A1 B1方案基础上追加投资1000万元,就可以采用A1 B2投资方案,此时,年费用将节约(2000-1500)500万元/年。两方案的差额现金流如图712所示:(单位:万元)A1 B2A1 B1: 1000500.012345n t(年) 图7-12 A1B2A1 B1方案的差额现金流量当n趋于时,上述追加投资方案的内部收益率(即差额内部收益率):由于A2 B1方案与A1 B2方案投资相同,但年费用比A1 B2方案多100万元/年,所以将A2 B1方案作为无资格方案排除。由于A2 B2方案与A1 B2方案的差额内部收益率为10%,比A3 B1方案与A2 B2方案的差额内部收益率60%低,在方案排序时会出现逻辑错误(追加投资方案排在低投资方案之前)。因此,必须将A2 B2方案作为无资格方案排除。在排除A2 B1方案和A2 B2方案后,A3 B1方案与A1 B2方案的差额内部收益率为:其他方案的差额内部收益率计算如上述分析。第二步,方案排序。首先将不可避免费方案排在第一位,再按差额内部收益率从高到低进行追加投资方案的排序,见图7-13。 图图7-13 7-13 各方案追加投资排序图各方案追加投资排序图02000 3000400045006000 7000 80009000IRR 50%40%30%27%21%10%5%i=10%第三步,方案选择。若投资预算在以下三种情况时(1) 无资金约束。因为A3 B2方案与A3 B1方案的差额内部收益率为10%,不大于基准贴现率(i=10%),所以在A3 B1方案的基础上,追加投资A3 B2方案不可行。同理,因为D2方案与D1方案的差额内部收益率为5%,小于基准贴现率(i=10%),所以在D1方案的基础上,追加投资D2方案不可行。其他方案间的差额内部收益率均大于基准贴现率,所以高投资方案优于低投资方案,综上所述,当无资金约束时,应选择方案A3 B1 C2 D1设备组合最有利,此时共使用资金7000万元。(2) 6000万元。若投资预算为6000万元,根据图713,按照效益最大化原则,排除在C1方案的基础上追加投资到C2方案的追加投资方案。应选择方案A3 B1 C1D1设备组合最有利。(3) 5000万元。若投资预算为5000万元,根据图713,当选择方案A1 B2 C1D1设备组合时,共需投资4500万元,剩余资金500万元。若想继续追加投资A3 B1方案,则还需增加资金1500万元,这就出现了所谓“不可分方案”问题,即资金预算比A1 B2 C1D1设备组合多,而选择A3 B1 C1D1设备组合又不够。因此,应对此问题作如下讨论:第一种选择,放弃使用多余的500万元资金,选择方案A1 B2 C1D1设备组合,此时,共使用资金4500万元。第二种选择,在第一种选择的基础上,放弃D1方案,此时共剩余资金1000万元,追加投资于C2方案。即选择方案A1 B2 C2D0设备组合,此时,共使用资金5000万元。第三种选择,在第一种选择的基础上,放弃C1方案,此时共剩余资金1500万元,追加投资于A3 B1方案。即选择方案A3 B1 C0D1设备组合,此时,共使用资金5000万元。在以上三种选择中进行效益比较,根据工程经济的差异比较原则,由于以上三种选择中都包括A1 B2追加投资方案,所以对该追加投资方案无需比较,上述三种选择中追加投资效益的不同点体现在:第一种选择:C1C0的追加投资效益+ D1D0的追加投资效益 =(40%10%)1000+(30%10%)500=400万元/年第二种选择:C1C0的追加投资效益+ C2C1 的追加投资效益 =(40%10%)1000+(21%10%)1000=410万元/年第三种选择:D1D0的追加投资效益+ A3 B1A1 B2的追加投资效益 =(30%10%)500+(27%10%)1500=355万元/年综上所述,在投资预算为5000万元时,最佳的投资方案为第二种选择,即A1 B2 C2D0设备组合最有利。第五节第五节 多方案选择的数学模型多方案选择的数学模型本节简单介绍多方案选择的基本数学模型万加特纳公式。目标函数目标函数: 式中,j是方案序数(j1、2、3、m);m是备选方案个数;t是周期数(t0,1,2,nj);nj是第j个方案的项目计算期;Ytj是第j个方案第t周期末的净现金流;i是基准贴现率;xj是决策变量(仅采用0或1两个值,采纳该方案取1,否则取0)。根据上式分析,其中 就是第j个方案的净现值。因此上述目标函数就是在m个备选方案中,寻求净现值之和最大的项目集合。这也是多方案选择的最终目标。约束条件约束条件: 1、资源约束: (7-2)式中,ctj是第j个方案在第t个周期内所需消耗的资源量;Bt是某种资源在第t个周期内可获得量。在投资方案选择中,Bt可理解为在第t个周期内的资金预算。2、互斥约束:x xa a+ x+ xb b+ x+ xc c+ + x+ + xk k11 (7-3)式中,xa是a方案的决策变量,由于决策变量x的取值仅为0或1两个值,因此,约束条件式(7-3)的含义是,在a,b,c,k方案中只能选择其中一个方案(或一个也不选)。这是典型的互斥型方案约束条件。3、依赖约束: x xa ax xb b00 (7-4)此约束条件的含义是a方案的实施以b方案的实施为先决条件,即如果采纳b方案(xb=1),a方案才可以实施(xa=1)或不实施(xa=0)。如果不采纳b方案(xb=0),xa也必须为0,即a方案不得采纳。4、互补约束: x xc cx xd d = = 0 0 (7-5)此约束条件的含义是要求c方案和d方案同时采纳(xc=1 同时xd=1),或者都不采用(xc=0 同时xd=0)。式75表示c方案和d方案紧密互补。但也有时两方案间不要求紧密互补,如e方案和f方案不要求紧密互补,这样,可以将其构造成3个互斥方案,即e、f、ef方案。参照式(7-3),可以将约束条件写为:x xe e+ x+ xf f+ x+ xefef 1 1 (7-6)5、项目不可分约束: xj = 0或1(j1、2、3、m) (7-7) 这种约束条件要求:要么所有方案都被选中(xj=1),要么没有任何方案被选中(xj=0)。在这种约束条件下,不允许采用方案的某个部分或局部。 这是一个01整数规划问题,其中所有关系都是线性的。这个问题可以用整数线性规划问题的任何一种解法来解答。满足所有约束条件的最优解将为公司进行多方案选择提供咨询建议。思 考 题l1、2、4、5、6、7
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号