资源预览内容
第1页 / 共60页
第2页 / 共60页
第3页 / 共60页
第4页 / 共60页
第5页 / 共60页
第6页 / 共60页
第7页 / 共60页
第8页 / 共60页
第9页 / 共60页
第10页 / 共60页
亲,该文档总共60页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
哥尼斯堡七桥问题 哥尼斯堡七桥问题哥尼斯堡七桥问题 现今的加里宁格勒,旧称哥尼斯堡,是一座历史名城。现今的加里宁格勒,旧称哥尼斯堡,是一座历史名城。现今的加里宁格勒,旧称哥尼斯堡,是一座历史名城。现今的加里宁格勒,旧称哥尼斯堡,是一座历史名城。在十八、十九世纪,那里是东普鲁士的首府,曾经诞生和培育在十八、十九世纪,那里是东普鲁士的首府,曾经诞生和培育在十八、十九世纪,那里是东普鲁士的首府,曾经诞生和培育在十八、十九世纪,那里是东普鲁士的首府,曾经诞生和培育过许多伟大的人物。著名的哲学家,古典唯心主义的创始人康过许多伟大的人物。著名的哲学家,古典唯心主义的创始人康过许多伟大的人物。著名的哲学家,古典唯心主义的创始人康过许多伟大的人物。著名的哲学家,古典唯心主义的创始人康德,终生没有离开过哥尼斯堡一步德,终生没有离开过哥尼斯堡一步德,终生没有离开过哥尼斯堡一步德,终生没有离开过哥尼斯堡一步! !二十世纪最伟大的数学家二十世纪最伟大的数学家二十世纪最伟大的数学家二十世纪最伟大的数学家之一,德国的希尔伯特也出生于此地之一,德国的希尔伯特也出生于此地之一,德国的希尔伯特也出生于此地之一,德国的希尔伯特也出生于此地。 哥城景致迷人,碧波荡漾的普累格河,横贯其境。在哥城景致迷人,碧波荡漾的普累格河,横贯其境。在哥城景致迷人,碧波荡漾的普累格河,横贯其境。在哥城景致迷人,碧波荡漾的普累格河,横贯其境。在河的中心有一座美丽的小岛。普河的两条支流,环绕其旁河的中心有一座美丽的小岛。普河的两条支流,环绕其旁河的中心有一座美丽的小岛。普河的两条支流,环绕其旁河的中心有一座美丽的小岛。普河的两条支流,环绕其旁汇成大河,把全城分为下图所示的四个区域:岛区汇成大河,把全城分为下图所示的四个区域:岛区汇成大河,把全城分为下图所示的四个区域:岛区汇成大河,把全城分为下图所示的四个区域:岛区(A)(A),东区东区东区东区(B)(B),南区,南区,南区,南区(C)(C)和北区和北区和北区和北区(D)(D)。 著名的哥尼斯堡大学,傍倚于两条支流的河旁,著名的哥尼斯堡大学,傍倚于两条支流的河旁,使这一秀色怡人的区域,又增添了几分庄重的韵味使这一秀色怡人的区域,又增添了几分庄重的韵味!有七座桥横跨普累格河及其支流,其中五座把河岸有七座桥横跨普累格河及其支流,其中五座把河岸和河心岛连接起来。这一别致的桥群,古往今来,和河心岛连接起来。这一别致的桥群,古往今来,吸引了众多的游人来此散步。吸引了众多的游人来此散步。n n 早在十八世纪以前,当地的居民便热衷于以早在十八世纪以前,当地的居民便热衷于以下有趣的问题:能不能设计一次散步,使得七座下有趣的问题:能不能设计一次散步,使得七座桥中的每一座都走过一次,而且只走过一次桥中的每一座都走过一次,而且只走过一次? 这便是著名的哥尼斯堡七桥问题。这便是著名的哥尼斯堡七桥问题。n n 这个问题后来变得有点惊心动魄:说是有一这个问题后来变得有点惊心动魄:说是有一队工兵,因战略上的需要,奉命要炸掉这七座桥。队工兵,因战略上的需要,奉命要炸掉这七座桥。命令要求当载着炸药的卡车驶过某座桥时,就得命令要求当载着炸药的卡车驶过某座桥时,就得炸毁这座桥,不许遗漏一座!炸毁这座桥,不许遗漏一座! 如果有兴趣,完全可以照样子画一张地图,如果有兴趣,完全可以照样子画一张地图,亲自尝试尝试。不过,要告诉大家的是亲自尝试尝试。不过,要告诉大家的是,想把所想把所有的可能线路都试过一遍是极为困难的!因为有的可能线路都试过一遍是极为困难的!因为各种可能的线路有各种可能的线路有 =5040种。要想一一试过,种。要想一一试过,真是谈何容易。正因为如此,七桥问题的解答真是谈何容易。正因为如此,七桥问题的解答便众说纷纭:有人在屡遭失败之后,倾向于否便众说纷纭:有人在屡遭失败之后,倾向于否定满足条件的解答的存在;另一些人则认为,定满足条件的解答的存在;另一些人则认为,巧妙的答案是存在的,只是人们尚未发现而已,巧妙的答案是存在的,只是人们尚未发现而已,这在人类智慧所未及的领域,是很常见的事这在人类智慧所未及的领域,是很常见的事!拿起栓有拿起栓有15个圆环的绳子,任选一个桥的支柱作为起点,沿桥依次套圈,看看个圆环的绳子,任选一个桥的支柱作为起点,沿桥依次套圈,看看是否可以让除起点之外的是否可以让除起点之外的13个桥柱上都有一个圈。(起点的柱子上有两个圈)。个桥柱上都有一个圈。(起点的柱子上有两个圈)。结论是,不可能实现完成该任务。结论是,不可能实现完成该任务。 n n 问题的魔力,问题的魔力,竟然吸引了天才竟然吸引了天才的欧拉的欧拉(Euler。1707-1783)。这位年轻的瑞士这位年轻的瑞士数学家,以其独数学家,以其独具的慧眼,看出具的慧眼,看出了这个似乎是趣了这个似乎是趣味几何问题的潜味几何问题的潜在意义。在意义。 公元公元1736年,年,29岁的欧拉向圣彼得堡科岁的欧拉向圣彼得堡科学院递交了一份题为学院递交了一份题为哥尼斯堡的七座桥哥尼斯堡的七座桥的论文。论文的开头是这样写的:的论文。论文的开头是这样写的: “讨论长短大小的几何学分支,一直被人讨论长短大小的几何学分支,一直被人们热心地研究着。但是还有一个至今几乎完们热心地研究着。但是还有一个至今几乎完全没有探索过的分支。莱布尼兹最先提起过全没有探索过的分支。莱布尼兹最先提起过它,称之:它,称之:“位置的几何学位置的几何学”。这个几何学。这个几何学分支讨论只与位置有关的关系,研究位置的分支讨论只与位置有关的关系,研究位置的性质;它不去考虑长短大小,也不牵涉到量性质;它不去考虑长短大小,也不牵涉到量的计算。但是至今未有过令人满意的定义,的计算。但是至今未有过令人满意的定义,来刻划这门位置几何学的课题和方法来刻划这门位置几何学的课题和方法” 接着,欧拉运用他那娴熟的变换技巧,如同下接着,欧拉运用他那娴熟的变换技巧,如同下图,把哥尼斯堡七桥问题变为读者所熟悉的,简单图,把哥尼斯堡七桥问题变为读者所熟悉的,简单的几何图形的的几何图形的“一笔画一笔画”问题:即能否笔不离纸,问题:即能否笔不离纸,一笔画但又不重复地画完以下的图形?一笔画但又不重复地画完以下的图形? 不难发现:右图中的点不难发现:右图中的点A、B、C、D,相当于,相当于七桥问题中的四块区域;而图中的弧线,则相当于七桥问题中的四块区域;而图中的弧线,则相当于连接各区域的桥。连接各区域的桥。 想不到轰动一时的哥尼斯堡七桥想不到轰动一时的哥尼斯堡七桥问题,竟然与孩子们的游戏,想用一问题,竟然与孩子们的游戏,想用一笔画画出笔画画出“串串字和字和“田田”字这类问题字这类问题一样,而后者并不比前者更为简单一样,而后者并不比前者更为简单! n 聪明的欧拉,正是在上述基础上,聪明的欧拉,正是在上述基础上,经过悉心研究,确立了著名的经过悉心研究,确立了著名的“一笔一笔画原理画原理”,从而成功地解决了哥尼斯,从而成功地解决了哥尼斯堡七桥问题。堡七桥问题。一笔画原理:一笔画原理: 一个图如果可以一笔画成,那么这个图一个图如果可以一笔画成,那么这个图中奇数顶点的个数不是中奇数顶点的个数不是0就是就是2。 下图画的两只动物世界的庞然大物,都下图画的两只动物世界的庞然大物,都可以用一笔画完成。它们的奇点个数分别为可以用一笔画完成。它们的奇点个数分别为0和和2。这两张图选自。这两张图选自智力世界智力世界一刊,也算一刊,也算一种别有风趣的例子。一种别有风趣的例子。 需要顺便提到的是:既然可由需要顺便提到的是:既然可由一笔画画成的脉络,其奇点个数应一笔画画成的脉络,其奇点个数应不多于两个,那么,两笔划或多笔不多于两个,那么,两笔划或多笔划能够画成的脉络,其奇点个数应划能够画成的脉络,其奇点个数应有怎样的限制呢?我想,聪明的读有怎样的限制呢?我想,聪明的读者完全能自行回答这个问题。者完全能自行回答这个问题。 一般地,我们有:一般地,我们有: 含有含有2n(n0)个奇点的脉络,需个奇点的脉络,需要要n笔划画成。笔划画成。 问问 题题 在哥尼斯堡在哥尼斯堡七桥问题中七桥问题中再加进去一再加进去一座桥,会怎座桥,会怎么样?么样?橡皮膜上的几何学橡皮膜上的几何学 在在哥尼斯堡七桥哥尼斯堡七桥问题中,读者问题中,读者已经看到了一种只研究图形各部分位置已经看到了一种只研究图形各部分位置的相对次序,而不考虑它们尺寸大小的的相对次序,而不考虑它们尺寸大小的新几何学。莱布尼兹新几何学。莱布尼兹(Leibniz,16461716)和欧拉为这种和欧拉为这种“位置几何学位置几何学”的发的发展奠定了基础。如今这一新的几何学,展奠定了基础。如今这一新的几何学,已经发展成一门重要的数学分支已经发展成一门重要的数学分支 拓扑学拓扑学 拓扑学研究的课题是极为有趣的。拓扑学研究的课题是极为有趣的。拓扑学研究的课题是极为有趣的。拓扑学研究的课题是极为有趣的。 在拓扑学中人们感兴趣的只是图形的位置而不是它的在拓扑学中人们感兴趣的只是图形的位置而不是它的在拓扑学中人们感兴趣的只是图形的位置而不是它的在拓扑学中人们感兴趣的只是图形的位置而不是它的大小。有人把拓扑学说成是橡皮膜上的几何学是很恰当的。大小。有人把拓扑学说成是橡皮膜上的几何学是很恰当的。大小。有人把拓扑学说成是橡皮膜上的几何学是很恰当的。大小。有人把拓扑学说成是橡皮膜上的几何学是很恰当的。因为橡皮膜上的图形,随着橡皮膜的拉动,其长度、曲直、因为橡皮膜上的图形,随着橡皮膜的拉动,其长度、曲直、因为橡皮膜上的图形,随着橡皮膜的拉动,其长度、曲直、因为橡皮膜上的图形,随着橡皮膜的拉动,其长度、曲直、面积等等都将发生变化。此时谈论面积等等都将发生变化。此时谈论面积等等都将发生变化。此时谈论面积等等都将发生变化。此时谈论“ “有多长?有多长?有多长?有多长?” ”、“ “有多有多有多有多大?大?大?大?” ”之类的问题,是毫无意义的之类的问题,是毫无意义的之类的问题,是毫无意义的之类的问题,是毫无意义的! ! 不过,在橡皮膜几何里也有一些图形的性质保持不变。不过,在橡皮膜几何里也有一些图形的性质保持不变。不过,在橡皮膜几何里也有一些图形的性质保持不变。不过,在橡皮膜几何里也有一些图形的性质保持不变。例如点变化后仍然是点;线变化后依旧为线;相交的图形例如点变化后仍然是点;线变化后依旧为线;相交的图形例如点变化后仍然是点;线变化后依旧为线;相交的图形例如点变化后仍然是点;线变化后依旧为线;相交的图形绝不因橡皮的拉伸和弯曲而变得不相交绝不因橡皮的拉伸和弯曲而变得不相交绝不因橡皮的拉伸和弯曲而变得不相交绝不因橡皮的拉伸和弯曲而变得不相交! ! 拓扑学正是研究诸如此类,使图形在橡皮膜上拓扑学正是研究诸如此类,使图形在橡皮膜上保持不变性质的几何学保持不变性质的几何学请大家思考:“串”、“田”两字,在橡皮膜上可变为什么图形 拓扑学是在拓扑学是在19世纪末兴起并在世纪末兴起并在20世纪世纪蓬勃发展的数学分支,与近世代数、近代蓬勃发展的数学分支,与近世代数、近代分析共同成为数学的三大支柱。分析共同成为数学的三大支柱。 拓扑学已在物理、化学、生物一些工拓扑学已在物理、化学、生物一些工程技术中得到越来越广泛的应用。拓扑学程技术中得到越来越广泛的应用。拓扑学主要研究几何图形在一对一的双方连续变主要研究几何图形在一对一的双方连续变换下不同的性质,这种性质称为换下不同的性质,这种性质称为“拓扑性拓扑性质质”。 以下我们将复杂的拓扑学知识应用到以下我们将复杂的拓扑学知识应用到简单的游戏中,使观众在游戏中了解拓扑简单的游戏中,使观众在游戏中了解拓扑学的特性,并学习到相关知识。学的特性,并学习到相关知识。 “内部内部”与与“外部外部” 一条头尾相连且自身一条头尾相连且自身一条头尾相连且自身一条头尾相连且自身不相交的封闭曲线,把橡皮不相交的封闭曲线,把橡皮不相交的封闭曲线,把橡皮不相交的封闭曲线,把橡皮膜分成两个部分。如果我们膜分成两个部分。如果我们膜分成两个部分。如果我们膜分成两个部分。如果我们把其中有限的部分称为闭曲把其中有限的部分称为闭曲把其中有限的部分称为闭曲把其中有限的部分称为闭曲线的线的线的线的“ “内部内部内部内部” ”,那么另一部,那么另一部,那么另一部,那么另一部分便是闭曲线的分便是闭曲线的分便是闭曲线的分便是闭曲线的“ “外部外部外部外部” ”。从闭曲线的内部走到闭曲线从闭曲线的内部走到闭曲线从闭曲线的内部走到闭曲线从闭曲线的内部走到闭曲线的外部,不可能不通过该闭的外部,不可能不通过该闭的外部,不可能不通过该闭的外部,不可能不通过该闭曲线。因此,无论你怎样拉曲线。因此,无论你怎样拉曲线。因此,无论你怎样拉曲线。因此,无论你怎样拉扯橡皮膜,只要不切割、不扯橡皮膜,只要不切割、不扯橡皮膜,只要不切割、不扯橡皮膜,只要不切割、不撕裂、不折叠、不穿孔,那撕裂、不折叠、不穿孔,那撕裂、不折叠、不穿孔,那撕裂、不折叠、不穿孔,那么闭曲线的内部和外部总是么闭曲线的内部和外部总是么闭曲线的内部和外部总是么闭曲线的内部和外部总是保持不变的保持不变的保持不变的保持不变的! ! “内部内部”与与“外部外部”是拓扑是拓扑学中很重要的一组概念学中很重要的一组概念 以下有趣的故事,将增加你以下有趣的故事,将增加你对这两个概念的理解:对这两个概念的理解: 传说古波斯穆罕默德的继承人哈传说古波斯穆罕默德的继承人哈里发,有一位才貌双全的女儿。姑娘里发,有一位才貌双全的女儿。姑娘的智慧和美貌,使许多聪明英俊的小的智慧和美貌,使许多聪明英俊的小伙子为之倾倒,致使求婚者的车马络伙子为之倾倒,致使求婚者的车马络绎不绝。哈里发决定从中挑选一位才绎不绝。哈里发决定从中挑选一位才智超群的青年为婿。于是便出了一道智超群的青年为婿。于是便出了一道题目,声明说:谁能解出这道题,便题目,声明说:谁能解出这道题,便将女儿嫁给谁!将女儿嫁给谁!n 哈里发的题目是这样的:请用线把下图中写有相同数字的小圆圈连接起来,但所连的线不许相交,也不许与图中的线相交 上述问题的解决,似乎不费吹灰上述问题的解决,似乎不费吹灰之力。但实际上求婚者们全都乘兴而之力。但实际上求婚者们全都乘兴而来,败兴而去!来,败兴而去! 据说后来哈里发终于醒悟,发现据说后来哈里发终于醒悟,发现自己所提的问题是不可能实现的,因自己所提的问题是不可能实现的,因而后来又改换了题目。也有的说,哈而后来又改换了题目。也有的说,哈里发固执已见,美丽的公主因此终生里发固执已见,美丽的公主因此终生未嫁。事情究竟如何,现在自然无从未嫁。事情究竟如何,现在自然无从查考。查考。 哈里发的失算,却是可以用拓扑学的知哈里发的失算,却是可以用拓扑学的知识加以证明的。其所需之概念,只有识加以证明的。其所需之概念,只有“内部内部”与与“外部外部”两个。事实上,我们很容易用两个。事实上,我们很容易用线把线把一一、一一连起来。明眼的读者连起来。明眼的读者可能已经发现:我们得到了一条简单的闭曲可能已经发现:我们得到了一条简单的闭曲线,这条曲线把整个平面分为内部线,这条曲线把整个平面分为内部(阴影部分阴影部分)和外部两个区域。其中一个和外部两个区域。其中一个在内部区域,在内部区域,而另一个而另一个却在外部区域,要想从闭曲线内却在外部区域,要想从闭曲线内部的部的,画一条弧线与外部的,画一条弧线与外部的相连,而相连,而与已画的闭曲线不相交,这是不可能的!这与已画的闭曲线不相交,这是不可能的!这正是哈里发悲剧之所在。正是哈里发悲剧之所在。 点A是在内部还是外部不不分分内内外外的的“克克莱莱因因瓶瓶”拓扑魔术奇观拓扑魔术奇观n博物馆中的拓扑游戏道具博物馆中的拓扑游戏道具
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号