资源预览内容
第1页 / 共16页
第2页 / 共16页
第3页 / 共16页
第4页 / 共16页
第5页 / 共16页
第6页 / 共16页
第7页 / 共16页
第8页 / 共16页
第9页 / 共16页
第10页 / 共16页
亲,该文档总共16页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
知识回顾知识回顾1、圆是轴对称图形、圆是轴对称图形2、圆是旋转对称图形,无论绕圆心旋转多少度,它都、圆是旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合。(圆的旋转不变性)能与自身重合。(圆的旋转不变性)圆的对称性:圆的对称性: 垂径定理及其推论垂径定理及其推论 ? 圆心角圆心角:我们把:我们把顶点在圆心顶点在圆心顶点在圆心顶点在圆心的角叫做的角叫做圆心角圆心角.OBA概念概念练一练:练一练:练一练:练一练:找出右上图找出右上图中的圆心角。中的圆心角。圆心角有:圆心角有:AOD,BOD,AOB显然显然AOBAOBOAB探究一探究一AB 如图,在如图,在 O中,将圆心角中,将圆心角AOB绕圆心绕圆心O旋旋转到转到AOB的位置,你能发现哪些等量关系?的位置,你能发现哪些等量关系?为什么?为什么?可得到:可得到:OAB探究一探究一 思考:如图,在等圆中,如果思考:如图,在等圆中,如果AOBAO B,你发现的等量关系是否依然成立?为什么?你发现的等量关系是否依然成立?为什么?O AB由由AOBAO B可得可得到:到:弧、弦与圆心角的关系定理弧、弦与圆心角的关系定理在同圆或等圆中,在同圆或等圆中,相等的圆心角所对的弧相等,相等的圆心角所对的弧相等,所对的弦也相等所对的弦也相等小结小结思考思考定理定理“在同圆或等圆中,在同圆或等圆中,相等的圆心角所对的弧相等的圆心角所对的弧相等,所对的弦也相等相等,所对的弦也相等”中,可否把条件中,可否把条件“在在同同圆或等或等圆中中”去掉?去掉?为什么?什么?(1)、)、如果如果 那么那么AOBAOB, 成立吗成立吗 ?探究二探究二在同圆中,在同圆中,(1)成成 立立(2)、)、如果如果 那么那么AOBAOB, 成立吗成立吗 ?探究二探究二在同圆中,在同圆中,(2)成成 立立弧、弦与圆心角的关系定理弧、弦与圆心角的关系定理1、在同圆或等圆中,、在同圆或等圆中,相等的相等的圆心角圆心角所对的所对的弧弧相等,所对的相等,所对的弦弦也相等也相等小结小结2、在同圆或等圆中、在同圆或等圆中,相等的,相等的弧弧所对的所对的圆心角圆心角_, 所对的所对的弦弦_;3、在同圆或等圆中、在同圆或等圆中,相等的相等的弦弦所对的所对的圆心角圆心角_,所对所对的的弧弧_相等相等相等相等相等相等相等相等在同圆或等圆中,两个在同圆或等圆中,两个圆心角、两条弧、两条圆心角、两条弧、两条弦中有一组量相等,它弦中有一组量相等,它们所对应的其余各组量们所对应的其余各组量也相等也相等 如图,如图,AB、CD是是 O的两条弦的两条弦(1)如果)如果AB=CD,那么,那么_,_(2)如果)如果 ,那么,那么_,_(3)如果)如果AOB=COD,那么,那么_,_(4)如果)如果AB=CD,OE AB于于E,OF CD于于F,OE与与OF相等吗相等吗?为什么?为什么?CABDEFOAB=CDAB=CD练习练习 OEOF证明:证明: AB=ACABC是等腰三角形是等腰三角形又又ACB=60, ABC是等边三角形是等边三角形 , AB=BC=CA. AOBBOCAOC.ABCO例题例题例例1 如图,在如图,在 O中,中, AB=AC ,ACB=60,求证:求证:AOB=BOC=AOC60 1、如图,、如图,AB是是 O 的直径,的直径, COD=35,求,求AOE 的度数的度数AOBCDE解:解:练习练习练习练习2、如图,如图,AD=BC, 比较比较AB与与CD的长度,并证明你的结的长度,并证明你的结论。论。 3、如图,、如图,BC为为 O的直径,的直径,OA是是 O的半径,弦的半径,弦BEOA,求证:求证:AC=AE 练习练习 同圆或等圆中,两个同圆或等圆中,两个圆心角、两条弧、两条弦圆心角、两条弧、两条弦中有一组量相等,它们所中有一组量相等,它们所对应的其余各组量也相等对应的其余各组量也相等
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号