资源预览内容
第1页 / 共40页
第2页 / 共40页
第3页 / 共40页
第4页 / 共40页
第5页 / 共40页
第6页 / 共40页
第7页 / 共40页
第8页 / 共40页
第9页 / 共40页
第10页 / 共40页
亲,该文档总共40页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
第七章第七章 误差序列相关误差序列相关1课堂优质 误差序列相关误差序列相关一、问题的性质和原因一、问题的性质和原因二、影响和后果二、影响和后果三、发现和判断三、发现和判断四、误差序列相关的处理和克服四、误差序列相关的处理和克服2课堂优质一、问题的性质和原因一、问题的性质和原因 对于模型对于模型 Yi= 0+ 1X1i+ 2X2i+ kXki+ i i=1,2, ,n随机项互不相关的基本假设表现为随机项互不相关的基本假设表现为 Cov( i , j)=0 i j, i,j=1,2, ,n 如果对于不同的样本点,随机误差项之间不再如果对于不同的样本点,随机误差项之间不再是不相关的,而是存在某种相关性,则认为出现是不相关的,而是存在某种相关性,则认为出现了了误差项误差项序列相关问题(也叫序列相关问题(也叫“自相关自相关”)。3课堂优质误差序列相关可以有多种不同的情况,其中相邻两期误差误差序列相关可以有多种不同的情况,其中相邻两期误差项之间的相关性,也就是误差项项之间的相关性,也就是误差项 受前一期误差项受前一期误差项 的影响,称为误差项的的影响,称为误差项的“一阶自回归一阶自回归”。可以表示为:。可以表示为:其中,其中, ,称为,称为“一阶自回归系数一阶自回归系数”, 是均值为是均值为0的独立分布随机变量。的独立分布随机变量。 时称为时称为“一阶正自相关一阶正自相关”, 称为称为“一阶负自一阶负自相关相关”。 一阶自回归是误差序列相关性中最重要的部分,也是误差一阶自回归是误差序列相关性中最重要的部分,也是误差序列相关性分析的主要对象。序列相关性分析的主要对象。4课堂优质出现误差序列相关的原因出现误差序列相关的原因1、经济变量固有的惯性和滞后性、经济变量固有的惯性和滞后性大多数经济大多数经济时间数据时间数据都有一个明显的特点都有一个明显的特点:惯惯性性,表现在时间序列不同时间的前后关联上。,表现在时间序列不同时间的前后关联上。例如,例如,绝对收入假设绝对收入假设下下居民总消费函数模型居民总消费函数模型: Ct=0+1Yt+t t=1,2,n由于由于消费习惯消费习惯的影响被包含在随机误差项中,则的影响被包含在随机误差项中,则可能出现序列相关性(往往是正相关可能出现序列相关性(往往是正相关 )。)。5课堂优质 2 2、模型设定的偏误、模型设定的偏误 例如,本来应该估计的模型为例如,本来应该估计的模型为 Yt= 0+ 1X1t+ 2X2t + 3X3t + t 所谓模型所谓模型设定偏误设定偏误(Specification error)是指)是指所设定的模型所设定的模型“不正确不正确”。主要表现在模型中丢。主要表现在模型中丢掉了重要的解释变量或模型函数形式有偏误。掉了重要的解释变量或模型函数形式有偏误。 但在模型设定中做了下述回归:但在模型设定中做了下述回归: Yt= 0+ 1X1t+ 1X2t + vt因此,因此, vt= 3X3t + t,如果,如果X3确实影响确实影响Y,则,则出现出现序列相关。序列相关。 6课堂优质又如:如果真实的边际成本回归模型应为:又如:如果真实的边际成本回归模型应为: Yt= 0+ 1Xt+ 2Xt2+ t其中:其中:Y=边际成本,边际成本,X=产出产出, 但建模时设立了如下模型:但建模时设立了如下模型: Yt= 0+ 1Xt+vt 因此,由于因此,由于vt= 2Xt2+ t, ,包含了产出的平方对随,包含了产出的平方对随机项的系统性影响,随机项也呈现序列相关性。机项的系统性影响,随机项也呈现序列相关性。7课堂优质3 3、数据的、数据的“编造编造” 在实际经济问题中,有些数据是通过已知数据在实际经济问题中,有些数据是通过已知数据生成的。生成的。 因此,新生成的数据与原数据间就有了内在的因此,新生成的数据与原数据间就有了内在的联系,表现出序列相关性。联系,表现出序列相关性。 例如:例如:季度数据季度数据来自月度数据的简单平均,来自月度数据的简单平均,这种平均的计算减弱了每月数据的波动性,从而这种平均的计算减弱了每月数据的波动性,从而使随机干扰项出现序列相关。使随机干扰项出现序列相关。 还有就是两个时间点之间的还有就是两个时间点之间的“内插内插”技术往技术往往导致随机项的序列相关性。往导致随机项的序列相关性。8课堂优质4、蛛网现象、蛛网现象 许多农产品的供给反映出一种所谓的蛛网许多农产品的供给反映出一种所谓的蛛网现象。供给对价格的反应要滞后一个时期,现象。供给对价格的反应要滞后一个时期,是因为供给需要经过一定的时间才能实现。是因为供给需要经过一定的时间才能实现。例如,今年年初的作物种植是受去年流行例如,今年年初的作物种植是受去年流行的价格影响的的价格影响的。9课堂优质二、误差序列相关的后果二、误差序列相关的后果(“病理病理”)1、参数估计量非有效、参数估计量非有效 因为,在有效性证明中利用了因为,在有效性证明中利用了 E(uu)= 2I 即同方差性和互相独立性条件。即同方差性和互相独立性条件。 而且,在大样本情况下,参数估计量虽然具有而且,在大样本情况下,参数估计量虽然具有一致性,但仍然不具有渐近有效性。一致性,但仍然不具有渐近有效性。10课堂优质 2、变量的显著性检验失去意义、变量的显著性检验失去意义 在变量的显著性检验中,统计量是建立在参数方差在变量的显著性检验中,统计量是建立在参数方差正确估计基础之上的,这只有当随机误差项具有同方差正确估计基础之上的,这只有当随机误差项具有同方差性和互相独立性时才能成立。性和互相独立性时才能成立。 其他检验其他检验( (主要是主要是F F检验检验)也是如此。)也是如此。11课堂优质3、模型的预测失效模型的预测失效 区间预测与参数估计量的方差有关,在方区间预测与参数估计量的方差有关,在方差有偏误的情况下,使得预测估计不准确,差有偏误的情况下,使得预测估计不准确,预测精度降低。预测精度降低。 所以,所以,当模型出现序列相关性时,它的当模型出现序列相关性时,它的预测功能失效。预测功能失效。12课堂优质常见的具体后果常见的具体后果(“临床表现临床表现”)OLS估计量仍然是线性无偏的;OLS估计量不是有效的;样本方差是总体方差的有偏估计;OLS估计量的方差是有偏的;t检验和F检验失效;计算得到的R2不能测度模型真实的拟合能力(虽然TSS=RSS+ESS还是成立的) 预测的方差也是无效的。13课堂优质三、发现和判断三、发现和判断(一)残差序列图分析(一)残差序列图分析误差序列相关性分析误差序列相关性分析14课堂优质二、发现和判断二、发现和判断分析误差序列相关残差分布图分析误差序列相关残差分布图15课堂优质二、发现和判断二、发现和判断(二)杜宾(二)杜宾- -瓦森检验瓦森检验DW检验检验的原理的原理 对线性回归模型对线性回归模型 如果误差项有一阶自回归问题,那么如果误差项有一阶自回归问题,那么 其中的其中的 , 是均值为是均值为0的独立同分布的独立同分布随机变量。随机变量。 16课堂优质二、发现和判断二、发现和判断根据根据 和和 的性质,有的性质,有因此因此17课堂优质二、发现和判断二、发现和判断考虑与考虑与 有密切关系的有密切关系的DWDW统计量统计量18课堂优质( (二)杜宾二)杜宾- -瓦森检验瓦森检验DW的精确分布也不清楚,但杜宾和瓦森的精确分布也不清楚,但杜宾和瓦森计算了对应显著性水平计算了对应显著性水平0.05和和0.01,样,样本容量在本容量在15到到100之间且解释变量个数之间且解释变量个数不超过不超过5个的判断误差序列存在一阶正相个的判断误差序列存在一阶正相关性性的关性性的DW的临界值表,作为经验检验的临界值表,作为经验检验误差序列相关性的基本工具,该表在书后误差序列相关性的基本工具,该表在书后附录附录280和和281面。面。19课堂优质二、发现和判断二、发现和判断检验误差序列正自相关性检验误差序列正自相关性DWDW检验区域图检验区域图 一阶自相关 无法判断 无一阶自相关性 无法判断 一阶负自相关20课堂优质二、发现和判断二、发现和判断DW检验只适用于检验只适用于一阶自回归性一阶自回归性检验,而检验,而且样本数较小或解释变量数较大时不适用且样本数较小或解释变量数较大时不适用。当解释变量有随机性(当解释变量有随机性(分布滞后模型分布滞后模型或或联联立方程组模型立方程组模型中)时不适用中)时不适用。DW检验存在无法判断的区间。检验存在无法判断的区间。可以通过增大样本容量来减小无法判断的可以通过增大样本容量来减小无法判断的区间区间。21课堂优质三、误差序列相关的处理和克服三、误差序列相关的处理和克服(一)一阶差分法(一)一阶差分法(二)广义差分法(二)广义差分法(三)柯(三)柯-奥迭代法奥迭代法(四)杜宾两步法(四)杜宾两步法22课堂优质 (一)一阶差分法(一)一阶差分法设线性回归模型为设线性回归模型为已知已知 有很强的一阶自相关性,即有很强的一阶自相关性,即 把滞后一期的观测值代入变量关系,得方程:把滞后一期的观测值代入变量关系,得方程:可得可得由于由于 ,因此,因此令令 ,可得可得因为因为 ,所以上式近似为,所以上式近似为 注意注意 相当于相当于DW 0。23课堂优质 (一)一阶差分法(一)一阶差分法用该用该Y和和X的一阶差分模型进行回归分析,可以的一阶差分模型进行回归分析,可以避免模型的误差序列一阶正自相关问题,得到避免模型的误差序列一阶正自相关问题,得到 的参数估计值的参数估计值 , 的参数估计值的参数估计值 局限性:它只适用于局限性:它只适用于 接近于接近于1的一阶正自相关的一阶正自相关性,对于如果模型没有误差序列相关性、有负自性,对于如果模型没有误差序列相关性、有负自相关性或只有轻微正自相关性,运用一阶差分模相关性或只有轻微正自相关性,运用一阶差分模型反而会导致更强的误差序列相关性。型反而会导致更强的误差序列相关性。 24课堂优质(二)广义差分法(二)广义差分法设线性回归模型为设线性回归模型为已知已知 有一阶自相关性,即有一阶自相关性,即 把滞后一期的观测值代入变量关系,得方程:把滞后一期的观测值代入变量关系,得方程:可得可得使使 ,根据根据 可得可得如果记如果记 ,所以上式为,所以上式为25课堂优质(二)广义差分法(二)广义差分法广义差分法克服了一阶差分法缺乏针对性的局限,精广义差分法克服了一阶差分法缺乏针对性的局限,精确程度有较大提高。确程度有较大提高。但差分变换会减少一个样本容量,这通常可以将对但差分变换会减少一个样本容量,这通常可以将对Y和和X的第一次观测转换为的第一次观测转换为假设已知的一阶自回归系数实际上无法知道,只能根假设已知的一阶自回归系数实际上无法知道,只能根据原模型的回归残差序列求据原模型的回归残差序列求 的估计值,由于原模型的估计值,由于原模型存在误差序列相关,那么回归残差就会受到影响,从存在误差序列相关,那么回归残差就会受到影响,从而一阶自回归系数的估计值就会有偏差,从而广义差而一阶自回归系数的估计值就会有偏差,从而广义差分法的可靠性就会受到影响。分法的可靠性就会受到影响。26课堂优质(三)柯奥迭代法(三)柯奥迭代法运用普通最小二乘法对原模型进行估计,运用普通最小二乘法对原模型进行估计,并得到回归残差序列;再根据回归残差序并得到回归残差序列;再根据回归残差序列计算列计算 的第一个估计值,有的第一个估计值,有27课堂优质(三)柯奥迭代法(三)柯奥迭代法用这个估计量进行广义差分处理,可以消除模用这个估计量进行广义差分处理,可以消除模型的大部分误差序列相关性。用型的大部分误差序列相关性。用 作广义差分作广义差分变换变换 ,再进行线性,再进行线性 回归,得到估计值回归,得到估计值 和和 ,并计算相应的,并计算相应的残差序列。残差序列。用用 和和 的回归残差进行的回归残差进行DW检验,如果不检验,如果不存在误差序列相关性问题,说明广义差分已经存在误差序列相关性问题,说明广义差分已经小出了原模型误差序列相关的影响,把小出了原模型误差序列相关的影响,把 和和 作为原模型的两个参数的估计值。作为原模型的两个参数的估计值。28课堂优质(三)柯奥迭代法(三)柯奥迭代法如果仍有误差序列相关性,则可以用新的回如果仍有误差序列相关性,则可以用新的回归残差序列重新计算归残差序列重新计算 的估计值的估计值 ,再进,再进行广义差分变换,并用变换过的数据进行回行广义差分变换,并用变换过的数据进行回归,计算相应的回归残差序列,检验误差序归,计算相应的回归残差序列,检验误差序列相关性。列相关性。这样反复进行下去直到检验结果不存在误差这样反复进行下去直到检验结果不存在误差序列相关性。通常迭代序列相关性。通常迭代1到到2次一阶自回归次一阶自回归系数的估计值就会向真实值收敛,我们把最系数的估计值就会向真实值收敛,我们把最后得到的一组估计量作为原模型的两个参数后得到的一组估计量作为原模型的两个参数的估计。的估计。29课堂优质(四)杜宾两步法(四)杜宾两步法从两变量模型的广义差分式从两变量模型的广义差分式整理后可得整理后可得接受上述多元线性回归得到的接受上述多元线性回归得到的 估计值估计值 ,利用,利用广义差分变换,广义差分变换, , 得到得到 对它进行最小二乘估计,并把估计回归结果计算的对它进行最小二乘估计,并把估计回归结果计算的 和和 ,作为原模型参数的,作为原模型参数的估计。估计。 ,30课堂优质例例71 检验模型是否存在误差序列相关检验模型是否存在误差序列相关31课堂优质模型的线性回归结果:模型的线性回归结果: 32课堂优质模型的残差序列图模型的残差序列图33课堂优质模型的残差数值表模型的残差数值表34课堂优质残差分布图残差分布图35课堂优质根据回归结果,根据回归结果,DW统计量统计量0.553242,查,查n=19,K=2,显著性水平为,显著性水平为0.05的的DW的临的临界值,可得界值,可得 。DW1.08,证明该模型的误差项确实有一阶,证明该模型的误差项确实有一阶正自相关性。正自相关性。 36课堂优质37课堂优质38课堂优质39课堂优质40课堂优质
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号