资源预览内容
第1页 / 共33页
第2页 / 共33页
第3页 / 共33页
第4页 / 共33页
第5页 / 共33页
第6页 / 共33页
第7页 / 共33页
第8页 / 共33页
第9页 / 共33页
第10页 / 共33页
亲,该文档总共33页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
选修选修4-5 4-5 不等式选讲不等式选讲根据课程标准,本专题根据课程标准,本专题介绍一些重介绍一些重要的不等式和它们的证明、数学归纳法要的不等式和它们的证明、数学归纳法和它的简单应用。和它的简单应用。 本专题的内容是在初中阶段掌握了不等式的基本概念,学会了一元一次不等式、一元一次不等式组的解法,多数学生在学习高中必修课五个模块的基础上展开的作为一个选修专题,教科书在内容的呈现上保持了相对的完整性本专题应该强调不等式及其证明的几何意义与背景,以加深学生对这些不等式的数学本质的理解,提高学生的逻辑思维能力和分析解决问题的能力多从数的运算的角度引出问题降低难度限制范围一、教学目标根据课程标准,通过本专题的教学,应该达到以下的教学目标:1回顾和复习不等式的基本性质和基本不等式。2理解绝对值的几何意义,并能利用绝对值不等式的几何意义证明以下不等式:(1)abab;(2)abaccb;(3)会利用绝对值的几何意义求解以下类型的不等式:axbc;axbc; xcxba。 3认识柯西不等式的几种不同形式。理解它们的几何意义。(1)证明柯西不等式的向量形式 |。(2)证明:(a2+b2)(c2+d2)(ac+bd)2。(3)证明:二维形式的三角形不等式。4用参数配方法讨论柯西不等式的一般情况用参数配方法讨论柯西不等式的一般情况. .5 5用向量递归方法讨论用向量递归方法讨论排序不等式。排序不等式。6 6了了解解数数学学归归纳纳法法的的原原理理及及其其使使用用范范围围,会会用用数学归纳法证明一些简单问题。数学归纳法证明一些简单问题。7 7会用数学归纳法证明贝努利不等式:会用数学归纳法证明贝努利不等式: (1x)n 1nx(x-1,n为正整数)。为正整数)。 了解当了解当n n为实数时贝努利不等式也成立。为实数时贝努利不等式也成立。8会用上述不等式证明一些简单问题。能够利用平均值不等式、柯西不等式求一些特定函数的极值。9通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法。本专题内容分成四讲,结构如下图所示:二、内容安排二、内容安排本专题教学约需18课时,具体分配如下第一讲不等式和绝对值不等式 5课时一、不等式(约课时)二、绝对值不等式(约课时)第二讲证明不等式的基本方法 4一、比较法(约1课时)二、综合法与分析法(约2课时)三、反证法与放缩法(约1课时)第三讲柯西不等式与排序不等式 4一、二维形式的柯西不等式(约1课时)二、一般形式的柯西不等式(约1课时)三、排序不等式(约2课时)第四讲数学归纳法证明不等式 4一、数学归纳法(约2课时)二、用数学归纳法证明不等式(约2课时)学习总结报告(约1课时)第一讲是“不等式和绝对值不等式”,它是本专题的最基本内容,也是其余三讲的基础本讲的第一部分类比等式的基本性质,先讨论不等式的基本性质,这是关于不等式在运算方面的一些最基本法则接着讨论基本不等式,介绍了基本不等式的一个几何解释:“直角三角形斜边上的中线不小于斜边上的高”,并把基本不等式推广到三个正数的算术几何平均不等式对于一般形式的均值不等式,则只作简单介绍,不给出证明在此基础上,介绍了它们在解决实际问题中的一些应用,如简单的极值问题等。案例:案例: 强调如何提出不等式的基本性质强调如何提出不等式的基本性质P2-3数轴、与0比较(标杆)从数的运算角度几何角度“不等式性质不等式性质”教学中的提问教学中的提问等式有等式有“等式两边同加(减)一个数,等式两边同加(减)一个数,等式仍然成立等式仍然成立”“”“等式两边同乘(除)等式两边同乘(除)一个数,等式仍然成立一个数,等式仍然成立”等基本性质,等基本性质,类似的,不等式有哪些基本性质呢?类似的,不等式有哪些基本性质呢?类比不等式基本性质的得出过程,你认类比不等式基本性质的得出过程,你认为可以怎样提出关于绝对值不等式性质为可以怎样提出关于绝对值不等式性质的猜想?的猜想? 第二部分讨论了有关绝对值不等式的性质及绝对值不等式的解法绝对值是与实数有关的一个基本而重要的概念,讨论关于绝对值的不等式具有重要的意义绝对值三角不等式是一个基本的结论,教科书首先引导学生借助于实数在数轴上的表示和绝对值的几何意义,探究归纳出绝对值三角不等式,接着联系向量形式的三角不等式,得到绝对值三角不等式的几何解释,最后用代数方法给出证明这样,数形结合,引导学生多角度认识这个不等式,逐步深化对它的理解利用绝对值三角不等式可以解决一种特殊形式的函数的极值问题,教科书安排了一个这样的实际问题。对于解含有绝对值的不等式,教科书只讨论了两种特殊类型不等式的解法,而不是系统地对这个问题进行研究。学生通过这两类含有绝对值的不等式能够基本学到解含有绝对值的不等式的一般思想和方法。案例:P16axbc;axbc; xcxba第二讲是“证明不等式的基本方法”对于不等式的深入讨论必须首先掌握一些基本的方法,所以本讲内容也是本专题的一个基础内容。本讲通过一些比较简单的问题,介绍了证明不等式的几种常用而基本的方法:比较法、综合法、分析法、反证法和放缩法本讲的教学内容中,用放缩法证明不等式是新的课程标准才引入到中学数学教学中的内容,一定要控制难度。第三讲是“柯西不等式和排序不等式”本讲介绍两个基本的不等式:柯西不等式和排序不等式,以及它们的简单应用柯西不等式是基本而重要的不等式,是推证其他许多不等式的基础,有着广泛的应用教科书首先介绍二维形式的柯西不等式,再从向量的角度来认识柯西不等式,引入向量形式的柯西不等式,再介绍一般形式的柯西不等式,以及柯西不等式在证明不等式和求某些特殊类型的函数极值中的应用。排序不等式也是基本而重要的不等式,一些重要不等式可以看成是排序不等式的特殊情形,有些重要不等式则可以借助排序不等式得到简捷的证明。教科书在讨论排序不等式时,展示了一个“探究猜想证明应用”的研究过程,目的是引导学生通过自己的数学活动,初步认识排序不等式的数学意义、证明方法和简单应用。柯西不等式、三角不等式和排序不等式也是数学课程标准正式引入到高中数学教学中的。第四讲是“数学归纳法证明不等式”本讲介绍了数学归纳法及其在证明不等式中的应用对于某些不等式,必须借助于数学归纳法证明,所以在不等式选讲的专题中安排这个内容是很有必要的。教科书首先结合具体例子,提出寻找一种用有限步骤处理无限多个对象的方法的问题然后,类比多米诺骨牌游戏,引入用数学归纳法证明命题的方法,并分析了数学归纳法的基本结构和用它证明命题时应注意的问题(两个步骤缺一不可)接着举例说明数学归纳法在证明不等式中的应用,特别地,证明了贝努利不等式。 案例:P46本专题的教学难点:三个正数的算术-几何平均不等式及其应用、绝对值不等式解法;用反证法,放缩法证明不等式;运用柯西不等式和排序不等式证明不等式; 三、编写中考虑的几个问题 根据课程标准,本专题应该强调不等式及其证明的几何意义与背景,以加深学生对这些不等式的数学本质的理解,提高学生的逻辑思维能力和分析解决问题的能力,我们在教科书的编写中努力去实现课程标准的思想。归纳起来,教科书有以下特点:(一)重视展现不等式的几何背景,力求让学生对重要不等式有直观理解数量关系和空间形式是数学研究的两个重要方面,不等式则是从数量关系的角度来刻画现实世界的。我们一般借助于代数方法证明不等式。代数证明要经过一系列的变形,人们常常不能很直接地看出其中的数量关系。而借助于几何的方法,把不等式中的有关量适当地用图形中的几何量表示出来,则往往能很好地指明不等关系,使学生从几何背景的角度,直观地,从而也是直接地理解不等式。本专题中的重要不等式都有明显的几何背景,教科书注意呈现不等式的几何背景,帮助学生理解不等式的几何本质。如借助于面积关系揭示一些重要不等式,绝对值三角不等式是借助于向量和三角形中的边长关系,柯西不等式是借助于向量运算,排序不等式是借助于三角形的面积。这样,逐渐引导学生在面对一个数学问题时能从几何角度去思考问题,找到解决问题的途径。(二)重视数学思想方法的教学数学思想是对于数学知识(数学中的概念、法则、性质、公式、公理、定理、方法等)的理性的、本质的、高度抽象和概括的认识,带有普遍的指导意义,蕴涵于运用数学方法分析、处理和解决数学问题的过程之中。数学方法是研究或解决数学问题并使之达到目的的手段、方式、途径或程序。数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深对于具体数学知识的理解和掌握。 本专题的内容包涵了丰富的数学思想方法,如应用重要不等式解决实际问题中体现出来的优化思想,在重要不等式的呈现过程中的数形结合思想,在解不等式中体现的转化的思想,函数思想,以及证明不等式的比较法、综合法与分析法、放缩法、反证法、数学归纳法,在证明柯西不等式中的配方法等,对于这些数学思想和方法,教科书都及时作归纳和总结,使学生能够结合具体的问题加以理解和体会。(三)重视引导学习方式和教学方式的改进在目前的中学数学教学实践仍存在一些问题,就学生的学习而言,比较突出的就是被动的接受式的学习,教师则偏重于灌输式的教学,启发式的教学原则做得不够。学生的问题意识不强,不能发现新情况新情景中的新问题,从而不能很好地解决问题。针对这种情况,教科书重视引导学生提出问题,教科书设置了许多探究栏目,鼓励学生主动探究,引导学生对于问题作左右类比,对于数学结论进行特殊化、作推广。例如,在讲述了基本不等式以后,教科书就提出了一个思考问题:“对于三个正数会有怎样的的不等式成立呢?”在证明了关于三个正数的均值不等式以后,又直接给出了一般的均值不等式;在证明了二维和三维的柯西不等式以后,就设置了一个探究性问题“对比二维形式和三维形式的柯西不等式,你能猜想一般形式的柯西不等式吗?”;再如“一般形式的三角不等式应该是怎样的?如何应用一般形式的柯西不等式证明它?请同学自己探究。”等等,这样的探究性问题在教科书中处处可见。 (四)注意发展数学应用意识重要不等式在许多实际问题中可以得到应用,在实际工作中常常能起到节约能源,降低成本,提高效率,加快速度等作用。在本专题中,教科书注意体现数学在实际工作中的广泛应用,编写了一些体现数学应用的例、习题。如经典的等周问题、盒子体积问题、施工队临时生活区选点问题、关于面积和体积的最值问题。通过这些简单的应用问题,使学生体会数学在实践中的作用。四、对教学的几个建议(一)注意把握教学要求无论是不等式还是数学归纳法,都已经发展成为内容非常丰富的初等数学分支,也出版了一些专门的论著,老师们对于这些内容一般都有丰富的教学经验,很容易把这些内容作一些拓展和补充。所以,在这个专题的教学中,要特别注意把握好教学要求,不要随意提高教学要求,而应该按照数学课程标准的要求来控制教学的深广度。课程标准对于本专题的几个教学内容都明确的教学要求,如:对于解含有绝对值的不等式,只要求能解几种特殊类型的不等式,不要求学生会解各种类型的含有绝对值的不等式。对于数学归纳法证明不等式的要求也只要求会证明一些简单问题。只要求通过一些简单问题了解证明不等式的基本方法,会利用所学的不等式证明一些简单不等式,等等。 另外,在不等式和数学归纳法的许多问题中,常常需要一些技巧性比较强的恒等变形,在本专题的教学中则要控制这方面的教学要求,不要使教学陷于过于形式化和复杂的恒等变形的技巧之中,教学中不要补充一些代数恒等变形过于复杂或过于技巧化的问题和习题,以免冲淡对于基本思想方法的理解,也不要引入一些过于专业和形式化、抽象化的数学符号语言,对于数学归纳法的理解,不必要求学生对于方法的理解水平提高到专业数学工作者才需要的数学理论高度,而只需要通过一些学生容易理解的数学问题中加深对于方法的理解和掌握。对于大多数的学生来说,要重视通过比较简单的问题让学生认识、理解和掌握这部分的基本数学思想和方法。当然,对于小部分确有余力的学生,仍可以适当对于教学内容作一些拓展,如可以介绍一般的均值不等式的证明及其应用,以使学生对于这一重要不等式有一个比较完整的了解。(二)要抓住教学重点无论对于基本不等式,还是解含有绝对值的不等式,不等式证明的方法,或数学归纳法的教学,都要抓住教学重点,抓住基本思想基本方法的教学,力求以简驭繁。
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号