资源预览内容
第1页 / 共22页
第2页 / 共22页
第3页 / 共22页
第4页 / 共22页
第5页 / 共22页
第6页 / 共22页
第7页 / 共22页
第8页 / 共22页
第9页 / 共22页
第10页 / 共22页
亲,该文档总共22页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
4. 椭圆的参数方程椭圆的参数方程1重点辅导其中参数的几何意义为其中参数的几何意义为:为圆心角为圆心角圆心为圆心为(a,b)、半径为半径为r的圆的参数方程为的圆的参数方程为x =a+rcosy =b+rsin(为参数为参数)知识回顾知识回顾对于我们现在学习的椭圆是否也有与之对应的参数方程呢?对于我们现在学习的椭圆是否也有与之对应的参数方程呢? 例例5、如图、如图,以原点为圆心以原点为圆心,分别以分别以a、b(ab0)为半径作两个圆,点为半径作两个圆,点B是大圆半径是大圆半径OA与小圆的交点,与小圆的交点,过点过点A作作AN Ox,垂足为,垂足为N,过点,过点B作作BM AN,垂足,垂足为为M,求当半径,求当半径OA绕点绕点O旋转时,点旋转时,点M的轨迹的参数的轨迹的参数方程。方程。解:设点解:设点M(x,y), 是以是以ox为始边,为始边,oA为终边的为终边的 正角。正角。为参数为参数那么那么:x=ON=|OA|cosx=ON=|OA|cos=acosy=NM=|OB|siny=NM=|OB|sin=bsinx =acos y =bsin(为参数)为参数)这就是所求点这就是所求点这就是所求点这就是所求点MM的轨迹的参数方程的轨迹的参数方程的轨迹的参数方程的轨迹的参数方程新课讲授新课讲授xOyABNM(x,y)x =acos在在 y =bsin(为参数)为参数)中:中:将两个方程变形,得将两个方程变形,得:联想到联想到所以有所以有:新课讲授新课讲授由此可知由此可知,点点M的轨迹是椭圆的轨迹是椭圆.xOyABNMx =acos y =bsin(为参数)为参数)我们把方程我们把方程 叫做椭圆叫做椭圆 的参数方程。的参数方程。 1.上面椭圆的参数方程上面椭圆的参数方程a ,b的几何意义是什么的几何意义是什么?椭圆椭圆的参数方程为:的参数方程为:的参数方程为:的参数方程为:x =acos y =bsin(为参数)为参数)a a是椭圆的长半轴长是椭圆的长半轴长是椭圆的长半轴长是椭圆的长半轴长,b,b是椭圆的短半轴长是椭圆的短半轴长是椭圆的短半轴长是椭圆的短半轴长 1.已知椭圆的参数方程已知椭圆的参数方程 ( 是参数)是参数) 则此椭圆的长轴长是则此椭圆的长轴长是_,短轴长是,短轴长是_。 2课堂练习课堂练习2.2.二次曲线二次曲线二次曲线二次曲线 ( 是参数)的左焦点坐标为是参数)的左焦点坐标为是参数)的左焦点坐标为是参数)的左焦点坐标为(- 4- 4,0 0)椭圆椭圆 的参数方程是怎样的?的参数方程是怎样的? xOyABNM).( 为参数q sinq q= =aycosq q= =bx1oFyx2FM12yoFFMxx =acos y =bsin(为参数)为参数)参数方程参数方程: :x=bcos y =asin(为参数)为参数)参数方程参数方程: :标准方程标准方程: :标准方程标准方程: :2.怎样把椭圆的普通方程和参数方程互化怎样把椭圆的普通方程和参数方程互化?参数参数方程方程普通普通方程方程设参数设参数消去参数消去参数 1. 将下列参数方程化为普通方程将下列参数方程化为普通方程,普通方普通方程化为参数方程程化为参数方程:课堂练习课堂练习x =2cos y =3sin(为参数)为参数)x =cos y =4sin(为参数)为参数) 2、下列结论正确的是:(、下列结论正确的是:( )A.A.曲线曲线曲线曲线 为椭圆为椭圆为椭圆为椭圆 x =5cos y =5sin(为参数)为参数)B.B.曲线曲线曲线曲线 为椭圆为椭圆为椭圆为椭圆 x =5cos y =4cos(为参数)为参数)C.C.曲线曲线曲线曲线 不是椭圆不是椭圆不是椭圆不是椭圆 x =5cos y =4sin(为参数)为参数)D Dx =5cos y =4sin(为参数且为参数且 )D.D.曲线曲线曲线曲线 不是椭圆不是椭圆不是椭圆不是椭圆3.曲线的参数方程曲线的参数方程 ,则此曲线是(),则此曲线是() A、椭圆、椭圆 B、直线、直线 C、椭圆的一部分、椭圆的一部分 D、线段、线段课堂练习课堂练习D D2.椭圆参数方程的应用椭圆参数方程的应用A A练习练习12 2、动点、动点、动点、动点P(x,y)P(x,y)在曲线在曲线在曲线在曲线 上变化上变化上变化上变化 ,求,求,求,求Z=2x+3yZ=2x+3y的最大值和最小值的最大值和最小值的最大值和最小值的最大值和最小值练习练习22.椭圆参数方程的应用椭圆参数方程的应用 解:因为点解:因为点P(x,y)在椭圆在椭圆 上,可设:上,可设:1422=+yxx =2cosy = sin (为参数为参数)= =32)32(cos32+- - q则则|AP|=22)(sin) 1cos2(qq+-当当cos= 时,时,|AP| =3632min此时此时此时此时,x= ,y=,x= ,y=35-+34即当点即当点即当点即当点P P的坐标为的坐标为的坐标为的坐标为 ( )时,)时,)时,)时,3534|AP| =36min例例1.已知点已知点A(1,0),点),点P在椭圆在椭圆 上移动,问:点上移动,问:点P在何处时使在何处时使|PA|的值最小?的值最小?1422= =+ +yxA A解:设椭圆内接矩形的一个顶点坐标为解:设椭圆内接矩形的一个顶点坐标为P所以椭圆内接矩形面积的最大值为所以椭圆内接矩形面积的最大值为2ab.例例2.已知椭圆已知椭圆 ,求椭圆内接矩形求椭圆内接矩形面积的最大值面积的最大值.2.椭圆参数方程的应用椭圆参数方程的应用 在椭圆在椭圆 上求一点上求一点 ,使使 到直线到直线 的距离最小的距离最小.方法一方法一: 方法二:方法二:图1-22.椭圆参数方程的应用椭圆参数方程的应用练习:练习:练习:练习:方法方法一一:设设则点则点 到直线距离到直线距离 ,其中,其中当当 时,时, 取最小值取最小值 . 此时此时,点的坐标点的坐标2.椭圆参数方程的应用椭圆参数方程的应用图1-2X-y+4=0X-y+4=0方法二方法二:把直线把直线 平移至平移至 , 与椭圆相切与椭圆相切,此时的切点此时的切点 就是最短距离时的点就是最短距离时的点. 由由由图形可知:由图形可知: 时时, 到直线到直线的距离最小的距离最小,此时此时 .即设:即设:2.椭圆参数方程的应用椭圆参数方程的应用 已知椭圆方程已知椭圆方程 求求 的范围。的范围。(用两种方法做用两种方法做)小结小结:(2)明白椭圆的参数方程在求最值问题上有其优越性。)明白椭圆的参数方程在求最值问题上有其优越性。(3)点到直线的距离可转化为平行直线间的距离。)点到直线的距离可转化为平行直线间的距离。(1)椭圆的参数方程以及参数方程和普通方程的互化椭圆的参数方程以及参数方程和普通方程的互化.
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号