资源预览内容
第1页 / 共78页
第2页 / 共78页
第3页 / 共78页
第4页 / 共78页
第5页 / 共78页
第6页 / 共78页
第7页 / 共78页
第8页 / 共78页
第9页 / 共78页
第10页 / 共78页
亲,该文档总共78页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
实在晶体结构中的位错 在实在的晶体结构中,位错线可能有哪一些在实在的晶体结构中,位错线可能有哪一些柏氏矢量取决于两柏氏矢量取决于两方面方面,一方面是位错线本身的能量,位错线能量和,一方面是位错线本身的能量,位错线能量和b b2 2成正比,因而,成正比,因而,位错线的柏氏矢量尽可能取最短的矢量;另一方面看,位错线的柏氏矢量尽可能取最短的矢量;另一方面看,如果位错的如果位错的拍氏矢量不是取点阵的平移矢量,使得位错线移动后点阵中的原子拍氏矢量不是取点阵的平移矢量,使得位错线移动后点阵中的原子会出现错排会出现错排,这也使能量增加。所以,这也使能量增加。所以,在实际的晶体结构中,稳定在实际的晶体结构中,稳定的位错的柏氏矢量大都是晶体点阵中最短的平移矢量。的位错的柏氏矢量大都是晶体点阵中最短的平移矢量。 柏氏矢量为晶体点阵的柏氏矢量为晶体点阵的单位平移矢量的位错称为全位错单位平移矢量的位错称为全位错。晶体。晶体中可以有中可以有柏氏矢量不为点阵平移矢量的位错,这类位错称为部分位柏氏矢量不为点阵平移矢量的位错,这类位错称为部分位错(又称不全位错)错(又称不全位错),部分位错所伴随的错排面,称为,部分位错所伴随的错排面,称为堆垛层错堆垛层错,或简称层错。或简称层错。 典型结构晶体的滑移系典型结构晶体的滑移系 晶体晶体结结构构稳稳定的柏氏矢量定的柏氏矢量可能的柏氏矢量可能的柏氏矢量fccfcc/2/2bccbcc/2, /2, hcphcp/3, /3, /3/3独立滑移系独立滑移系 每一点的应变可用六个分量表示,但塑性形变保持体积不变,每一点的应变可用六个分量表示,但塑性形变保持体积不变,即即 1111+ + 2222+ + 3333=0=0,故只有五个应变分量是独立的。,若有五个,故只有五个应变分量是独立的。,若有五个独立的滑移系开动的话,则靠这五个独立滑移系滑移量的调整可独立的滑移系开动的话,则靠这五个独立滑移系滑移量的调整可以使任一点获得任意的应变量。以使任一点获得任意的应变量。 所谓独立的滑移系是指某一滑移系产生的滑移不能用所讨论所谓独立的滑移系是指某一滑移系产生的滑移不能用所讨论的其它滑移系的滑移组合来代替的其它滑移系的滑移组合来代替。晶体的滑移系中能互相搭配成晶体的滑移系中能互相搭配成五个独立的滑移系的组合数的多少是衡量晶体塑性大小的一个因五个独立的滑移系的组合数的多少是衡量晶体塑性大小的一个因素。素。 对于面心立方晶体,对于面心立方晶体,111111滑移系含有滑移系含有1212种滑移系,如种滑移系,如果在这果在这1212种滑移系中任取五个,可选择的方式有:种滑移系中任取五个,可选择的方式有: 并非每一种搭配方式中所有五个滑移系都是独立的。并非每一种搭配方式中所有五个滑移系都是独立的。 面心立方的四个面心立方的四个111111组成四面体以组成四面体以(111)(111)面展开成一个大的等边面展开成一个大的等边三角形。在这个三角形内,四个三角形。在这个三角形内,四个111111面面和六个和六个滑移方向都滑移方向都包括在其中,可以用它方便地讨论滑移系间是否互相相关。包括在其中,可以用它方便地讨论滑移系间是否互相相关。 在在(111)(111)面上搭配三个滑移方向面上搭配三个滑移方向 、 和和 所构成的三个滑移系,如果这三个滑移所构成的三个滑移系,如果这三个滑移系都滑移相同的滑移量,则对应变的总贡献为系都滑移相同的滑移量,则对应变的总贡献为零,它只相当于试样整体转动。这三个滑移系零,它只相当于试样整体转动。这三个滑移系并非全部独立,只有两个是独立的。并非全部独立,只有两个是独立的。 按如下方式放置一坐标系:以滑移面的法线为按如下方式放置一坐标系:以滑移面的法线为x x 2 2,滑移方向,滑移方向为为x x 1 1,这个滑移系切变了,这个滑移系切变了 角后,在角后,在x x 坐标系下提供的应变为:坐标系下提供的应变为: 对晶体参考坐标系对晶体参考坐标系x x,它与,它与x x 坐标系间的坐标变换(坐标系间的坐标变换(T Tij ij)为:)为: Tijx 1x 2x 3x1 1n1p1x2 2n2p2x3 3n3p3其中其中n n是滑移面法向单位矢量,是滑移面法向单位矢量, 是滑移方向单位矢量是滑移方向单位矢量。在晶体坐标系在晶体坐标系x x下的应变张量为:下的应变张量为: 即即 现讨论的三个滑移系的滑移面都是现讨论的三个滑移系的滑移面都是(111)(111),它的单位法线矢量,它的单位法线矢量n n的方的方向余弦都是向余弦都是 ,而滑移方向是,而滑移方向是,所以,所以 i i等于等于 或者为或者为0 0。把。把三个滑移系具体的三个滑移系具体的n ni i和和 i i值代入并相加,就获得三个滑移系切动相值代入并相加,就获得三个滑移系切动相同的同的 后所得的总应变后所得的总应变 t t: 这证明了这三个滑移系并非完全独立。以这三个滑移系为讨论基点,这证明了这三个滑移系并非完全独立。以这三个滑移系为讨论基点,再在再在1212个滑移系剩余的个滑移系剩余的9 9个中任取两个组成五个滑移系组,可能的方个中任取两个组成五个滑移系组,可能的方式有式有 按照类似的讨论,最后知道真正能构成按照类似的讨论,最后知道真正能构成5 5个完全独立的滑移系组个完全独立的滑移系组的方式的方式共有共有384384种种。面心立方能选择。面心立方能选择5 5个完全独立的滑移系的方式个完全独立的滑移系的方式如此之多,说明面心立方晶体具有较高延展性的原因。如此之多,说明面心立方晶体具有较高延展性的原因。 体心立方金属,当滑移系为体心立方金属,当滑移系为(110)(110)时,按上面对面心立方晶时,按上面对面心立方晶体讨论相同的方法可知,这类滑移中能构成体讨论相同的方法可知,这类滑移中能构成5 5个完全独立的滑移系个完全独立的滑移系组也共有组也共有384384种。当滑移系为种。当滑移系为112112时,有时,有648648种构成五个完全种构成五个完全独立的滑移系组;如果滑移系可在独立的滑移系组;如果滑移系可在110110及及112112面之间搭配,则可能面之间搭配,则可能有有2125221252种(其中有一些是应去掉的)。虽然体心立方可构成的五种(其中有一些是应去掉的)。虽然体心立方可构成的五个独立滑移系组方式如此多,体心方在低温时仍变脆,这种现象个独立滑移系组方式如此多,体心方在低温时仍变脆,这种现象不能用独立滑移系的多少来解释。不能用独立滑移系的多少来解释。 密排六方晶体,它的密排六方晶体,它的(0001) (0001) 滑移系只有滑移系只有3 3种,并且它们只有种,并且它们只有两个是独立的。两个是独立的。 滑移系也有滑移系也有3 3组,其中也是只有两个组,其中也是只有两个是独立的。是独立的。(0001) (0001) 以及以及 两种滑移系也只共有两种滑移系也只共有4 4个独立滑移系,能构成个独立滑移系,能构成4 4个独立滑移系的方式共有个独立滑移系的方式共有9 9种。同时,如种。同时,如果只有果只有 /3/3型柏氏矢量的位错开动,无论如何也不会在型柏氏矢量的位错开动,无论如何也不会在00010001方向产生滑移分量,由此可以看出,六方晶体中很难凑成五个独方向产生滑移分量,由此可以看出,六方晶体中很难凑成五个独立的滑移系组,因而六方晶体金属往往是延展性不高的。立的滑移系组,因而六方晶体金属往往是延展性不高的。 位错反应的位错反应的FrankFrank能量判据能量判据 若一个柏氏矢量为若一个柏氏矢量为b b2 2和另一个柏氏矢量为和另一个柏氏矢量为b b3 3的两个位错合成一个的两个位错合成一个新位错,新位错的柏氏矢量为新位错,新位错的柏氏矢量为b b1 1,从柏氏矢量应遵守的几何条件看,从柏氏矢量应遵守的几何条件看,应该应该b b1 1 b b2 2b b3 3;从能量条件看,如果从能量条件看,如果 ,位错是相互位错是相互排斥的。相反,若排斥的。相反,若 ,它们是相吸引的它们是相吸引的。的两个位错的两个位错能结合的条件是能结合的条件是 这称这称FrankFrank判据判据。 从几何看,当从几何看,当b b(1)(1)与与b b(2)(2)的夹角是锐角时,两个位错是相排斥的;的夹角是锐角时,两个位错是相排斥的;当当b b(1)(1)与与b b(2)(2)的夹角是钝角时,两个位错是相吸的的夹角是钝角时,两个位错是相吸的。面心立方面心立方结构中的部分位错结构中的部分位错 堆垛及堆垛层错 面心立方结构的最密面心立方结构的最密排面是排面是111111,面心立面心立方结构是以方结构是以111111最密最密排面按一定的次序堆排面按一定的次序堆垛起来的垛起来的。 第一层第一层111111面上有两个可堆放的面上有两个可堆放的位置:位置: 和和 位置,在第二层只能位置,在第二层只能放在一种位置,放在一种位置,在面上每个球和在面上每个球和下层下层3 3个球相切个球相切 ,也和上层,也和上层3 3个球个球相切相切 。第一层为第一层为 A A,第二放在第二放在B B 位位置,第三层放置,第三层放在在C C 位置,第位置,第四层在放回四层在放回A A位置。位置。111111面面按按ABCABCABCABC顺序排列,这顺序排列,这就形成面心立就形成面心立方结构。方结构。(111)(111)面以及其中的一些方向面以及其中的一些方向面心立方面心立方(111)(111)面原子排列示意面原子排列示意图图 , ,并标出一些有用的晶向。并标出一些有用的晶向。 为了清楚地看清为了清楚地看清 面的堆垛,应找一个和面的堆垛,应找一个和 面垂直的面面垂直的面,例如(110)面。(110)面 和和面的交线是面的交线是 方向,方向,所以在所以在(110)(110)面上面上的一个的一个 方向方向 就表示一个就表示一个 面。面。若从某一层若从某一层111111面开始,以后堆垛的每一个面开始,以后堆垛的每一个111111面分别带着后面面分别带着后面的各层一起切动的各层一起切动/6/6矢量,就构成孪晶,如:矢量,就构成孪晶,如: 切动后的堆垛顺序是切动后的堆垛顺序是 其中号位置表示是孪生面,其中号位置表示是孪生面,中线表示错排中心的位置,中线表示错排中心的位置,CACCAC这几层实际上是密排六方这几层实际上是密排六方的排列。的排列。 内禀层错内禀层错(I I型层错)型层错) 把晶体相对移动而获得层错的移动矢量称把晶体相对移动而获得层错的移动矢量称层错矢量。如果某一层错矢量。如果某一层层 面相对近邻一层切动面相对近邻一层切动a a/6/6(层错矢量为层错矢量为a a/6/6 ),即,即C C位置切动到位置切动到A A位置,切动后位置,切动后C C层以上的晶体各层位置作如下变化:层以上的晶体各层位置作如下变化:C CA A,A AB B,B BC C: :结果变成结果变成 这类层错的层错矢量是这类层错的层错矢量是/6 /6 ,这类层错称内禀这类层错称内禀。因为这种层错。因为这种层错是由滑移形成,有时亦称滑移层错。是由滑移形成,有时亦称滑移层错。其中表示孪生面,虚线表示错排中心位置。这种堆垛发生两处其中表示孪生面,虚线表示错排中心位置。这种堆垛发生两处不符合面心立方的堆垛顺序,即构成不符合面心立方的堆垛顺序,即构成四个原子层的密排六方结构四个原子层的密排六方结构(其中两边最外层面是和原来面心立方结构共格的)或者(其中两边最外层面是和原来面心立方结构共格的)或者构成两构成两个孪生面个孪生面。 这类这类层错也可以由抽去一层层错也可以由抽去一层 面(例如面(例如C C层)而成,这时层)而成,这时层错矢量是层错矢量是 。这时,不称为滑移层错。外禀层错(外禀层错(E E型层错)型层错) 如果把一层如果把一层111111面固定,例如固定面固定,例如固定C C层,在这一层原子面两侧都分层,在这一层原子面两侧都分别切动别切动1/61/6类型的矢量,即类型的矢量,即 结果所得的堆垛顺序为结果所得的堆垛顺序为 在这里,是孪生面,虚线是错排中心位置。这种堆垛也是发生在这里,是孪生面,虚线是错排中心位置。这种堆垛也是发生两处不符合面心立方结构的堆垛,在错排处构成三个原子层的孪两处不符合面心立方结构的堆垛,在错排处构成三个原子层的孪晶(其中两边最外层面是和原晶体共格的孪晶界面)。这种层错晶(其中两边最外层面是和原晶体共格的孪晶界面)。这种层错称外禀层错。层错矢量是称外禀层错。层错矢量是211/6211/6。 因为因为内禀层错的两侧的排列顺序一直到层错边界都是正确的内禀层错的两侧的排列顺序一直到层错边界都是正确的顺序顺序,“ “内禀内禀” ”因而得名;而现在的这种排列则不然,在因而得名;而现在的这种排列则不然,在层错中层错中心的一排原子面,不论从层错的两边哪一侧看,都不能归结为正心的一排原子面,不论从层错的两边哪一侧看,都不能归结为正确的排列顺序确的排列顺序。 若在面的堆垛中任意插入一层若在面的堆垛中任意插入一层 面(例如在面(例如在B B和和C C层之间插入层之间插入一层一层A A),于是堆垛顺序变成),于是堆垛顺序变成ABCABCABACABCABC,这也是也是外禀层错外禀层错。这时的层错矢量是层错矢量是 。两类层错的比较两类层错的比较I I型型 ABCABCABABCABCAB ABCABCABCABCABCABC滑移滑移112/6112/6或抽出一层面,相或抽出一层面,相应的层错矢量是应的层错矢量是/6/6或或/3/3;层错为层错为2 2个原子厚。个原子厚。E E型型 ABCABCABACABCABC一层面一层面 相邻的上下两侧各滑相邻的上下两侧各滑移移/6/6或插出一层面,相应或插出一层面,相应的层错矢量是的层错矢量是/6/6或或/3/3;层错为层错为3 3个原子厚。个原子厚。 层错使晶面产生错排,故使能量增加。单位面积层错所增加层错使晶面产生错排,故使能量增加。单位面积层错所增加的能量称层错能。对应不同的层错矢量所引起的层错能不同。只的能量称层错能。对应不同的层错矢量所引起的层错能不同。只有如上所述的少数层错矢量的层错能比较低才可能存在。有如上所述的少数层错矢量的层错能比较低才可能存在。 对铝计算的层错能随对铝计算的层错能随(111)(111)面上的层错矢量的变化。面上的层错矢量的变化。 /2/2类型的层错矢量及类型的层错矢量及/6/6类型层错矢量的层错能最小类型层错矢量的层错能最小。AgAg、AuAu和和CuCu的层错能分别约为的层错能分别约为1616、5555和和73107310 3 3J/mJ/m2 2,这些层错能是,这些层错能是比较低的比较低的;AlAl、NiNi的层错能分别约为的层错能分别约为200200、4001040010 3 3J/mJ/m2 2,这些层错能,这些层错能是比较高的。(晶界能约为是比较高的。(晶界能约为800800 100010100010 3 3J/mJ/m2 2) 汤普逊(Thompson)记号 汤普逊四面体汤普逊四面体: :其中包含了面心立方各种位错的拍氏矢量和滑移其中包含了面心立方各种位错的拍氏矢量和滑移面面 。四面体中的。四面体中的A A,B B,C C,D D, , , 和和 点间任何连线所构点间任何连线所构成的矢量,都是有关面心立方晶体中位错的重要矢量。以成的矢量,都是有关面心立方晶体中位错的重要矢量。以A A,B B,C C,D D英文字母和英文字母和 , , 、 希腊字母任意组成的矢量符号称希腊字母任意组成的矢量符号称为汤普逊符号为汤普逊符号。 英英- -英英的汤普逊符号表示的汤普逊符号表示/2/2型矢量,共有型矢量,共有1212种,例如种,例如DADA是是101/2101/2;CBCB是是 /2/2;BCBC是是 /2/2等。并有等。并有CBCBCBCB等等。A A ,B B ,C C ,D D 或或 A A, B B, C C, D D等八个符号是等八个符号是/3/3型矢型矢量。例如量。例如A A 是是 /3/3。同样有。同样有A A = =A A等关系。等关系。英英- -希腊字母希腊字母组成的符号,除了在组成的符号,除了在中所提到的中所提到的8 8种符号外,其种符号外,其它都是它都是/6/6型矢量,共有型矢量,共有2424种。例如种。例如C C 是是 /6/6;B B 是是 /6/6等。同样也有等。同样也有C C C C等关系。等关系。由由希腊字母组成希腊字母组成的符号,表示的符号,表示/6/6型矢量,共型矢量,共1212种,例如种,例如是是 /6/6等。等。设设X X,Y Y,U U和和V V表示任意字母,表示任意字母,XY/UVXY/UV表表示从示从XYXY矢量中点引向矢量中点引向UVUV矢量中点并延伸矢量中点并延伸长度为这两点距离两倍的矢量。它相当长度为这两点距离两倍的矢量。它相当 XY/UV=XY/UV=XUXU+ +YVYV从这一定义可知:从这一定义可知: XYXYYV=XVYV=XV;XY+UV=XU/YVXY+UV=XU/YV XY/UV XY/UVUV/XYUV/XY XY/UV=YX/UV=XY/VU=YX/VU XY/UV=YX/UV=XY/VU=YX/VU。按上述的定义,还引出几类有用的符号。按上述的定义,还引出几类有用的符号。 由由所列的符号中的任两个符号组成的新符号,例如所列的符号中的任两个符号组成的新符号,例如 D/CD/C ,它,它是是/3/3型矢量,共有型矢量,共有1212种。种。 /BD/BD符号及与此同类的符号是符号及与此同类的符号是/6/6型矢量,共有型矢量,共有2424种。种。 D/BD/B 符号及与此同类的符号是符号及与此同类的符号是/6/6型矢量,共有型矢量,共有4848种。种。汤汤普普逊类逊类型型符号符号矢量矢量类类型型ABABA A A A D/CD/C /BD/BD D/BD/B 全位错全位错 全位错的柏氏矢量是全位错的柏氏矢量是/2/2 。这个刃位错的半原子面是这个刃位错的半原子面是(110)(110)面,面,在在a a110/2110/2间隔内含有间隔内含有2 2层层(110)(110)面面。在。在 面上看,这面上看,这2 2层半原子面表层半原子面表现为弯曲的原子列。若全位错向左移动,则图中上层原子(深蓝现为弯曲的原子列。若全位错向左移动,则图中上层原子(深蓝圆)向右滑动,滑动的距离为圆)向右滑动,滑动的距离为 110/2110/2,即从,即从 位置到相邻的位置到相邻的 位置,位置,相应相应2 2层半原子面向左移动层半原子面向左移动 。部分位错(不全位错)部分位错(不全位错) 层错的边界就是位错线,它的柏氏矢量就是层错的层错矢量。层错的边界就是位错线,它的柏氏矢量就是层错的层错矢量。层错矢量为层错矢量为a a/6/6的层的层错边缘错边缘是是ShockleyShockley位错位错。右图从图中的右图从图中的C C层滑到层滑到A A位位置,置,C C层以上的晶体也跟层以上的晶体也跟着一起滑动后产生层错。着一起滑动后产生层错。这种部分位错的滑移面就这种部分位错的滑移面就是层错所在面,即是层错所在面,即111111面,面,位错滑移伴随层错的扩大位错滑移伴随层错的扩大或缩小。或缩小。若若这这位错作离开滑移面运位错作离开滑移面运动,则会产生严重错排,动,则会产生严重错排,故这位错是不可能攀移的故这位错是不可能攀移的 ShockleyShockley位错位错 扩展位错扩展位错 把全位错的把全位错的滑动分成两步:滑动分成两步:第一步从第一步从C C位置位置到邻近的到邻近的B B位置,位置,移动移动a a /6 /6 ( (B)B),然后再从,然后再从B B位置移动到另位置移动到另一个一个C C位位置,移置,移动动a a /6 /6 (A(A ) )。即即一个全位错一个全位错发生分解:发生分解: ABdBABdB A A 当完成第一步当完成第一步移动时,形成移动时,形成约一排原子宽约一排原子宽的层错。的层错。 如果AB位错切动所走的第一步是A,然后再切动B,出现层错能非常高的层错示。这种高能层错是不稳定的,它会萌生一对位错偶并扫过原来层错区以降低其能量。萌生一对部分位错环C+ C,C位错在原来层错的A层扫过,使得原来的A位错变成A+C=B,C位错在原来层错A层上面的扫过,在两边留下C和C位错。这样把原来层错区的A-A层的高能层错变成低能的外禀层错。层错两侧的一对部分位错合成柏氏矢量仍和原来的一样。这时A和B仍是肖克莱部分位错,但它是外禀层错区的边缘,两侧的位错涉及层错的两个原子面,故称为双肖克莱位错,记为D-肖克莱位错。前面所讨论的内禀层错区边界的肖克莱位错称为单肖克莱位错,记为S-肖克莱位错。 怎样判断扩展位错中的层错究竟属于哪一类层错?总结出如下规律:总结出如下规律:如果观察的滑移面是如果观察的滑移面是正面正面,即这个面的法线指向汤普逊,即这个面的法线指向汤普逊四面体外侧,那么四面体外侧,那么沿着位错正向看沿着位错正向看,在,在左侧的部分位错左侧的部分位错符号由符号由“ “希腊文希腊文- -英文英文” ”字母组成字母组成,右侧的部分位错符右侧的部分位错符号由号由“ “英文英文- -希腊文希腊文” ”字母组成字母组成的,则这两个部分位错的,则这两个部分位错间的层错是内禀层错。间的层错是内禀层错。相反,如果左侧的部分位错符号由相反,如果左侧的部分位错符号由“ “英文英文- -希腊文希腊文” ”字字母组成,右侧的部分位错由母组成,右侧的部分位错由“ “希腊文一英文希腊文一英文” ”字母组成字母组成的,则这两个部分位错间层错是外禀层错。的,则这两个部分位错间层错是外禀层错。如果观察的滑移面是负面,即这个面的法线指向汤普逊如果观察的滑移面是负面,即这个面的法线指向汤普逊四面体内侧,判断的方法和上述的相反四面体内侧,判断的方法和上述的相反。 单纯从单纯从FrankFrank能量判据看,全位错的这一分解是可行的。因为能量判据看,全位错的这一分解是可行的。因为 B B和和A A 方向的夹角是锐角(方向的夹角是锐角( 6060 ),分解后的),分解后的2 2个部分位错相斥,个部分位错相斥,使它们之间包含使它们之间包含1 1个一定宽度的层错区域,个一定宽度的层错区域,还需要考虑这部分层错还需要考虑这部分层错的能量。的能量。 一个柏氏矢量和位错线的一个柏氏矢量和位错线的夹角为夹角为 的混合全位错,分解的混合全位错,分解为为2 2个个ShockleyShockley位错后,位错后,2 2个位错个位错的柏氏矢量与位错线的夹角分的柏氏矢量与位错线的夹角分别是别是 +30+30 和和 3030 。两个部分位。两个部分位错间的斥力为:错间的斥力为:平衡时,上式应等于层错能平衡时,上式应等于层错能 ,两位错间的平衡距离,两位错间的平衡距离d d0 0为为 式中式中b b是全位错的柏氏矢量是全位错的柏氏矢量 一般金属的一般金属的 =1/3=1/3,从上式可知,纯刃型全位错分解的扩展位错,从上式可知,纯刃型全位错分解的扩展位错平衡宽度和纯螺全位错分解的扩展位错的平衡宽度比约为平衡宽度和纯螺全位错分解的扩展位错的平衡宽度比约为7 : 37 : 3。 层错能越高,扩展位错的平衡宽度越窄。对于层错能越高,扩展位错的平衡宽度越窄。对于CuCu,计算得出计算得出d d0 0在在2.22.2和和7.0nm7.0nm之间。之间。AgAg的的d d0 0约为约为CuCu的两倍;而的两倍;而AlAl中的层错能较高,中的层错能较高,d d0 0约为约为CuCu的的1/41/4,全位错基本上,全位错基本上 不可能扩展。不可能扩展。不不锈锈钢钢中中扩扩展展位位错错的的明明场场衍衍衬衬像像硅硅中中扩扩展展位位错错的的高高分分辨辨点点阵阵像像压杆位错压杆位错 在两个相交的滑移面上的位错分解成扩展位错,在在两个相交的滑移面上的位错分解成扩展位错,在( )( )和和( )( )面上面上分别有平行于两面交线柏氏矢量为分别有平行于两面交线柏氏矢量为BABA和和ABAB的全位错,它们分别的全位错,它们分别分解成具有内禀层错的扩展位错,并在分解成具有内禀层错的扩展位错,并在( )( )和和( )( )的交线上相遇反的交线上相遇反应:应: 结果在两个滑移面交线上形成柏氏矢量为结果在两个滑移面交线上形成柏氏矢量为的压秆位错,它的压秆位错,它两侧的层错间夹角为锐角两侧的层错间夹角为锐角 ,这一组位错是不动的,这一组位错是不动的,称Lomer-Cottrell位错(简称LC位错)和面角位错,又称又称L-CL-C阻塞阻塞。 在在( (c c) )和和( )( )面上分别有平行于两面交线柏氏矢量为面上分别有平行于两面交线柏氏矢量为BABA和和ABAB的的全位错在交线上相遇反应的情况。在两个面上的扩展位错位置如全位错在交线上相遇反应的情况。在两个面上的扩展位错位置如下图所示,它们相遇时发生反应:下图所示,它们相遇时发生反应: 结果在两个滑移面交线上形成柏氏矢量为结果在两个滑移面交线上形成柏氏矢量为AB/AB/的压秆位错,的压秆位错,它两侧的层错间夹角为钝角它两侧的层错间夹角为钝角 ,这一组位错也是不动的,这一组位错也是不动的,也是后,也是后来位错移动的阻塞,来位错移动的阻塞,称HirthHirth阻塞阻塞。 面心立方晶体中形成压杆位错的方式很多,但是形成的压杆位面心立方晶体中形成压杆位错的方式很多,但是形成的压杆位错中有很多是不符合错中有很多是不符合FrankFrank能量判据因而是不稳定的,有很多又是能量判据因而是不稳定的,有很多又是重复的。总的来说,重复的。总的来说,只有四种类型的压杆位错是稳定的只有四种类型的压杆位错是稳定的。若以。若以( (a a) )和和( (d d) )面为例看,形成这四种类型压杆位错的反应为(其中所标的面为例看,形成这四种类型压杆位错的反应为(其中所标的锐角或钝角表示两个层错面间的夹角类型):锐角或钝角表示两个层错面间的夹角类型): 压杆位错不能运动,生成了压杆位错就构成一组不动位错,它压杆位错不能运动,生成了压杆位错就构成一组不动位错,它对以后的位错运动起障碍作用,即起阻塞作用,这些阻塞效应对对以后的位错运动起障碍作用,即起阻塞作用,这些阻塞效应对加工硬化起重要作用。加工硬化起重要作用。L-CL-C阻塞阻塞HirthHirth阻塞阻塞位位错类错类型型层错层错面的面的夹夹角角柏氏矢量柏氏矢量b为单位长度b b2 2汤汤普普逊逊符符号号晶体学矢量晶体学矢量全位全位错错ABAB1 11 1肖克莱位肖克莱位错错A A 1/31/3弗弗兰兰克位克位错错A A 2/32/3压压杆位杆位错错锐锐角角1/91/9压压杆位杆位错错钝钝角角CB/CB/2/92/9压压杆位杆位错错锐锐角角 D/AD/A 4/94/9压压杆位杆位错错钝钝角角/CD/CD5/95/9面心立方结构晶体中主要位错的柏氏矢量和能量面心立方结构晶体中主要位错的柏氏矢量和能量 从表中看出,形成压杆位错前两个肖克莱不全位错的能量之和正比于b2/3(b是全位错的柏氏矢),如果只从位错线能量考虑,形成L-C阻塞的反应降低的能量最多,即从原来两个部分位错的能量2b2/3降低到生成的压杆位错能量b2/9,即减少了5b2/9的能量;其次是形成Hirth阻塞的反应,它降低的能量为4b2/9,所以,这两种阻塞最易出现。 平行于两个相交的滑移面交线的位错碰到一起的几率是低的,平行于两个相交的滑移面交线的位错碰到一起的几率是低的,所以上述产生压杆位错的方式是不容易的。下图给出了产生压所以上述产生压杆位错的方式是不容易的。下图给出了产生压杆位错的更合理的机制,这个图是以产生杆位错的更合理的机制,这个图是以产生L-CL-C阻塞的压杆位错作阻塞的压杆位错作为例子的。为例子的。 在(c)面上的扩展位错D+B和在( )面上的扩散位错CB分别在各自的滑移面滑移相遇相交截时,在相遇处发生反应,结点沿着两个滑移面交线XY拉开,形成柏氏矢量为的压杆位错,最终构成了L-C阻塞。 经变形的经变形的Cu-7AlCu-7Al合金合金明场衍衬像明场衍衬像20,000在在XYXY线上形成线上形成Lomer-CottrellLomer-Cottrell阻塞;阻塞;F F处是堆垛层错;处是堆垛层错;N N处是一些位错结点。处是一些位错结点。FrankFrank部分部分位错位错 如果层错是由抽去或插入一层如果层错是由抽去或插入一层(111)(111)面而形成的,即层错面相对面而形成的,即层错面相对位移了一个位移了一个(111)(111)面间距面间距( (a a111/3)111/3),层错与完整部分交界处的位错的,层错与完整部分交界处的位错的柏氏矢量就是柏氏矢量就是a a111/3111/3。这类部分位错。这类部分位错称称FrankFrank位错。位错。S-FrankS-Frank位错位错D-FrankD-Frank位错位错它们在层错所在的面上的运动是攀移运动,这类位错可以攀移,它们在层错所在的面上的运动是攀移运动,这类位错可以攀移,但滑移会导致晶体产生严重错排,所以实际上它是不能滑移的。但滑移会导致晶体产生严重错排,所以实际上它是不能滑移的。 FrankFrank位错环的柏氏矢量位错环的柏氏矢量111111面的面间距(面的面间距(/3/3)。若用汤普)。若用汤普逊符号表示,则柏氏矢量的类型是逊符号表示,则柏氏矢量的类型是A A 、B B 、C C 和和D D 或是它们或是它们的反号。的反号。 S-FrankS-Frank位错环包围一片位错环包围一片I I型层错,型层错,D-FrankD-Frank位错环包围一位错环包围一片片E E型层错。若型层错。若 b b的方向指向位错环外,它是的方向指向位错环外,它是S-S-弗兰克位错环;弗兰克位错环;若若 b b的方向指向位错环内,它是的方向指向位错环内,它是D-D-弗兰克位错环。弗兰克位错环。 对于层错能高的晶体,弗兰克位错环是不稳定的,往往会在层对于层错能高的晶体,弗兰克位错环是不稳定的,往往会在层错中错中荫生肖克莱位错环扫过层错面从而把层错消除荫生肖克莱位错环扫过层错面从而把层错消除,使部分位错,使部分位错环转变成全位措环。环转变成全位措环。 在在S-S-弗兰克位错环中,如果在层错中萌生一个弗兰克位错环中,如果在层错中萌生一个S-S-肖克莱位错环,肖克莱位错环,当它扫过整个层错使层错消失成为全位错。当它扫过整个层错使层错消失成为全位错。例如:D+AAD; D+BBD; D+CCD 在在D-D-弗兰克位错环中,因为它包含外禀层错,所以要在层错中弗兰克位错环中,因为它包含外禀层错,所以要在层错中萌生两个肖克莱位错环才可以扫过整个层错使层错消失成为全位萌生两个肖克莱位错环才可以扫过整个层错使层错消失成为全位错。错。例如:弗兰克位错环中萌发肖克莱位错环而变成全位错环的驱动力是层弗兰克位错环中萌发肖克莱位错环而变成全位错环的驱动力是层错能,若弗兰克位错的能量为错能,若弗兰克位错的能量为E EI I,比层错能为,比层错能为 ,全位错的能量为,全位错的能量为E E,这个过程可以产生的条件是:,这个过程可以产生的条件是: R R是位错环的半径。因为是位错环的半径。因为E E E E1 1就恰好是一个肖克莱位错环的能量,就恰好是一个肖克莱位错环的能量,肖克莱位错的拍氏矢量的大小为肖克莱位错的拍氏矢量的大小为 所以的条件变为所以的条件变为 弗兰克位错环通常都以密排方向为界,即位错线沿着弗兰克位错环通常都以密排方向为界,即位错线沿着111111面上的面上的方向形成六边形或三边形的位错环。对于层错能比较低的材方向形成六边形或三边形的位错环。对于层错能比较低的材科,位错环会分解为一个压杆位错和一个肖弗克莱位错,肖克莱科,位错环会分解为一个压杆位错和一个肖弗克莱位错,肖克莱位错扩展到和原位错环所在面相交的另一个位错扩展到和原位错环所在面相交的另一个111111面上。面上。 例如在例如在( (b b) )面上柏氏矢量为面上柏氏矢量为 B B的弗兰克位错,位错线走向为的弗兰克位错,位错线走向为ADCADC构成的三角形,这三根位错线分别发生如下反应:构成的三角形,这三根位错线分别发生如下反应: 柏氏矢量为柏氏矢量为 B B、 B B和和 B B的肖克莱位错又分别两两结合在它们两两的肖克莱位错又分别两两结合在它们两两所在的面的交线上形成如下式表示的另一种压杆位错,结果形成所在的面的交线上形成如下式表示的另一种压杆位错,结果形成“ “切割层错四面体切割层错四面体” ” 。 扩展位错的交滑移扩展位错的交滑移 一个纯螺全位错是可以交滑移的,但分解成扩展位错后部分一个纯螺全位错是可以交滑移的,但分解成扩展位错后部分位错离开层错所在的面会引起严重错排。所以扩展位错较滑移前位错离开层错所在的面会引起严重错排。所以扩展位错较滑移前一定要以一定的方式变回全位错一定要以一定的方式变回全位错才能交滑移。才能交滑移。 例如在例如在 面(面(b b面)上柏氏面)上柏氏矢量为矢量为 110/2110/2全位错分解:全位错分解: 其中一段位错束集成其中一段位错束集成110/2110/2全位全位错,它交滑移到错,它交滑移到 面(面(a a面)面)上,然后在上,然后在a a面上再分解成扩展面上再分解成扩展位错:位错: 随着在随着在2 2个滑移面交线上的两个个滑移面交线上的两个结点沿交线向外延伸,完成整结点沿交线向外延伸,完成整根位错的交滑移。根位错的交滑移。扩展位错另一种交滑移方式扩展位错另一种交滑移方式 扩展位错中柏氏矢量为扩展位错中柏氏矢量为 的领先滑动部分位错的领先滑动部分位错首先发生分解首先发生分解其中柏氏矢量为其中柏氏矢量为 D D 的位错的滑移面的位错的滑移面是是 ,它就滑移到它就滑移到 面上;面上;而柏氏矢量为而柏氏矢量为/ /CDCD 的位错不能动,的位错不能动,留在留在 面和面和 面的交线上面的交线上结果结果 C C位错的滑移面也是位错的滑移面也是 面,结果完成了交滑移。面,结果完成了交滑移。扩展位错的交滑移需要外力或者热激活的帮助。因此,扩展位错的交滑移需要外力或者热激活的帮助。因此,FCCFCC金属金属中位错的交滑移的难易程度取决与应力、温度和层错能中位错的交滑移的难易程度取决与应力、温度和层错能 的数值的数值。 在两个滑移面交线上形成柏氏矢量为在两个滑移面交线上形成柏氏矢量为AB/AB/的压秆位错,它的压秆位错,它两侧的层错间夹角为钝角两侧的层错间夹角为钝角 割阶的扩展割阶的扩展 在应力下作用下割阶所表现的行为和它是否扩展有很大关系,在应力下作用下割阶所表现的行为和它是否扩展有很大关系,有一些塑性形变理论是以扩展割阶的性质为基础的。主要讨论长有一些塑性形变理论是以扩展割阶的性质为基础的。主要讨论长割阶,单位割阶(只看作长割阶的极端情况,不仔细讨论它的原割阶,单位割阶(只看作长割阶的极端情况,不仔细讨论它的原子模型的细节)子模型的细节) 。一个位错的割阶必然处在和位错原来滑移面相。一个位错的割阶必然处在和位错原来滑移面相交的另一个滑移面上,根据位错的走向不同,割阶和原位错可以交的另一个滑移面上,根据位错的走向不同,割阶和原位错可以成锐角也可能成钝角。下面讨论纯刃位错长割阶(锐角)的完全成锐角也可能成钝角。下面讨论纯刃位错长割阶(锐角)的完全分解,设分解所得层错都是内禀层错。分解,设分解所得层错都是内禀层错。 ABABA A + + + B BB+BA+A当在应力的作用下B+BA+A纯螺位错锐角型割阶的完全扩展纯螺位错锐角型割阶的完全扩展 CBC+BB+BB+B两个滑移面上的全位错交割扩展称位错网络两个滑移面上的全位错交割扩展称位错网络在同一个滑移面上两组位错相交发生反应和扩展形成收缩和打开节点交替排列的位错网络形成I和E层错相间的位错网络 体心立方体心立方结构中的位错结构中的位错 全位错全位错 体心立方结构中位错的柏氏矢量是体心立方结构中位错的柏氏矢量是/2/2,而滑移面则不很确,而滑移面则不很确定,它随成分、温度和形变程度而异,通常是定,它随成分、温度和形变程度而异,通常是110110,还可以是,还可以是112112或者或者123123。另外,若在。另外,若在(110)(110)滑移面上滑移面上2 2个个/2/2型位错发生反型位错发生反应应这一反应是降低能量的,而这一反应是降低能量的,而 001001位错的滑移面也是位错的滑移面也是(110)(110),所以在,所以在体心立方结构中柏氏矢量为体心立方结构中柏氏矢量为型的全位错也是可能存在的型的全位错也是可能存在的。这种位错不会参与塑性变形;同时,这种位错不会参与塑性变形;同时,100100面是主解理面,上面的面是主解理面,上面的位错反应可能是裂纹形核的机制。位错反应可能是裂纹形核的机制。 如下的反应如下的反应 在反应前后的能量相同,但因在反应前后的能量相同,但因2 2根位错合并为根位错合并为1 1根位错后,位错根位错后,位错核心的能量有所降低,所以这一反应也会发生。因而核心的能量有所降低,所以这一反应也会发生。因而,在在BCCBCC金金属中柏氏矢量为属中柏氏矢量为型的全位错也可能存在型的全位错也可能存在。堆垛层错 实验中没有观察到实验中没有观察到bccbcc金属的堆垛层错,而且它很容易发生交金属的堆垛层错,而且它很容易发生交滑移的现象表明层错会很高,由计算机计算的层错能与层错矢量滑移的现象表明层错会很高,由计算机计算的层错能与层错矢量的的 图所证实:没有亚稳层错。图所证实:没有亚稳层错。MoMo的的(110)(110)面面MoMo的的(112)(112)面面bccbcc结构的层错能很高,位错的简单分解模型是不适当的,应该从结构的层错能很高,位错的简单分解模型是不适当的,应该从其核心结构及核心行为来解释其核心结构及核心行为来解释bccbcc结构的位错行为,而位错核心结结构的位错行为,而位错核心结构及核心行为的知识来自计算机模拟。尽管如此。也可以借助对构及核心行为的知识来自计算机模拟。尽管如此。也可以借助对层错结构来了解核心结构。层错结构来了解核心结构。 112112面的层错面的层错。体心。体心立方晶体结构可以看立方晶体结构可以看作是由作是由112112面按六层面按六层为周期的重复堆垛而为周期的重复堆垛而成。若每一层不同的成。若每一层不同的112112面记以面记以a a、b b、c c、d d、e e、f f等符号,则等符号,则bccbcc结结构按构按112112面的堆垛序面的堆垛序abcdefabcdefabcdefabcdef第一类层错:第一类层错:孪生矢孪生矢量为量为/6/6,若,若112112面的某一层按孪生方面的某一层按孪生方向切动向切动/6/6后就产后就产生一层孪晶。例如生一层孪晶。例如a a层带着后面的层带着后面的bcdebcde各各层一起切动或反向切层一起切动或反向切动,切动部分各层的动,切动部分各层的位置作如下改变:位置作如下改变: abcdefcdabcdef位错核心在位错核心在112112面上的结构面上的结构 在在112112面上柏氏矢量为面上柏氏矢量为/2/2的全位错核心可以的全位错核心可以“ “分解分解” ”为两为两个分位错,并夹带着不稳定层错。例如,在面柏氏矢量为的位错的个分位错,并夹带着不稳定层错。例如,在面柏氏矢量为的位错的“ “分解分解” ”反应为反应为这种这种“ “分解分解” ”相当于把全位错的滑移分成两步,这两步位移的次相当于把全位错的滑移分成两步,这两步位移的次序不同,引起的层错结构不同。序不同,引起的层错结构不同。若第一步位移为若第一步位移为 ,获得的,获得的是是I I1 1型孪晶层错。两个分位错的布置如上图示,其层错面上下面型孪晶层错。两个分位错的布置如上图示,其层错面上下面堆垛次序如上图所示。如果分位措移动引起切动是产生孪晶层错堆垛次序如上图所示。如果分位措移动引起切动是产生孪晶层错的话,则切动后各层次序按上图所表示的变化。的话,则切动后各层次序按上图所表示的变化。 对于这种分解能否发生是有不同看法的。如果认为对于这种分解能否发生是有不同看法的。如果认为I I1 1型和型和I I2 2型层型层错能相差不大,则这种分解是可能的;但是,一般认为错能相差不大,则这种分解是可能的;但是,一般认为I I2 2型层型层错能比错能比I I1 1型的高,同时,分位错移动时使晶体逆着孪生方向切型的高,同时,分位错移动时使晶体逆着孪生方向切动的动的P-NP-N力要高,所以有人认为这种情况是不可能的。同时,力要高,所以有人认为这种情况是不可能的。同时,也认为在孪生方向滑移比逆孪生方向滑移容易得多。也认为在孪生方向滑移比逆孪生方向滑移容易得多。 对于螺位错,位错也可以作非共面扩展。在对于螺位错,位错也可以作非共面扩展。在面上的一个面上的一个/2/2螺型全位错可以螺型全位错可以“ “分解分解” ”为三个为三个/6/6型的分位错,并扩展型的分位错,并扩展到以柏氏矢量为晶带轴的三个到以柏氏矢量为晶带轴的三个面上。例如,全位错作如下形面上。例如,全位错作如下形式式“ “分解分解” ”: 这三个位错分别扩展到这三个位错分别扩展到 、 和和 面上,形成三个夹角面上,形成三个夹角均为均为120120 的层错带。这种位错结构称为三叶位错。三个分位错扩的层错带。这种位错结构称为三叶位错。三个分位错扩展的方向不同引起层错类型不同。中图表示扩展后产生展的方向不同引起层错类型不同。中图表示扩展后产生I I1 1层错的情层错的情况,若向反向扩展,如右图所示,则扩展后产生的是况,若向反向扩展,如右图所示,则扩展后产生的是I I2 2型层错。型层错。 在应力的作用下,这种非共面扩展的分位错表现出在应力的作用下,这种非共面扩展的分位错表现出“ “各向异性各向异性” ”性质。在均匀应力场作用下,它们受力的方向都是相同的,但性质。在均匀应力场作用下,它们受力的方向都是相同的,但在滑移面上受力大小则不相同。在滑移面上受力大小则不相同。加力的方向不同,使位错运动所需要加的力的大小不同,在滑移加力的方向不同,使位错运动所需要加的力的大小不同,在滑移面上要求的分切应力也不同,这就造成所谓的面上要求的分切应力也不同,这就造成所谓的“ “各向异性各向异性” ”现象,现象,并且,并且,SchmidSchmid定律就失效了。定律就失效了。 对于纯螺位错,位错核心可能在对于纯螺位错,位错核心可能在110110作非共面式扩展。在以作非共面式扩展。在以为交线为交线3 3个个110110面上的非共面扩展的情况是面上的非共面扩展的情况是 下图是用计算机模拟螺位错的在下图是用计算机模拟螺位错的在(111)(111)面上的原子位置和位移差面上的原子位置和位移差( (由箭头表示,但位移的方向垂直于纸面),也获得非共面扩展由箭头表示,但位移的方向垂直于纸面),也获得非共面扩展的情况。两个图分别表示两种等效的组态。的情况。两个图分别表示两种等效的组态。 /2111/2型纯螺全位错在型纯螺全位错在112112面可能共面扩展和面可能共面扩展和非共面扩展。例如在非共面扩展。例如在 面上的柏氏矢量为面上的柏氏矢量为a a111/2111/2的螺位错核心作如下分解:的螺位错核心作如下分解: 柏氏矢量为111/2的纯螺位错核心也可以在以为交线3个112面非共面扩展: 这种中心无分位错的三叶结构是不稳定的,其中这种中心无分位错的三叶结构是不稳定的,其中1 1个个111/6111/6分位错分位错会回到中心上去。会回到中心上去。 核心作非共面扩展的位错必须把分位错压回变成共面扩展的形式才可以滑移,所以螺位错滑移的CRSS比刃位错的高。 棱柱位错棱柱位错 当间隙原子或空位在晶体的晶面上凝聚时会形成棱柱位错当间隙原子或空位在晶体的晶面上凝聚时会形成棱柱位错。一般认为在一般认为在BCCBCC金属中,间隙原子和空位在密排面金属中,间隙原子和空位在密排面110110凝聚。这凝聚。这样所生成的位错柏氏矢量为样所生成的位错柏氏矢量为/2/2类型,并且,这些位错和一个类型,并且,这些位错和一个不稳定的高能层错相连。为了降低能量,在其形成的早期就会以不稳定的高能层错相连。为了降低能量,在其形成的早期就会以如下的两种反应之一使层错上下的面发生切动以转变为全位错:如下的两种反应之一使层错上下的面发生切动以转变为全位错:反应是能量升高的,反应驱动力是高的层错能。生成的位错是反应是能量升高的,反应驱动力是高的层错能。生成的位错是低能量位错,所以低能量位错,所以在很多金属中都观察到具有这种柏氏矢量的在很多金属中都观察到具有这种柏氏矢量的棱柱位错环棱柱位错环。 还有另一种反应:还有另一种反应: 反应也是能量升高的,反应驱动力是高的层错能。但生成的位错反应也是能量升高的,反应驱动力是高的层错能。但生成的位错不是低能量位错,不是低能量位错,在在 -Fe-Fe及其合金中及其合金中观察到具有这种柏氏矢量的观察到具有这种柏氏矢量的棱柱位错环棱柱位错环。还没有满意的解释。还没有满意的解释。有序合金中的位错有序合金中的位错 反相畴反相畴 用简单的用简单的ABAB正方点阵(点阵常数是正方点阵(点阵常数是a a)的二维点阵模型来看有序)的二维点阵模型来看有序合金中的位错的特点。有序化后,无序相的等同位置不再等同,合金中的位错的特点。有序化后,无序相的等同位置不再等同,因而降低晶体的对称性。因而降低晶体的对称性。 APBAPB也可看作是一种特殊的也可看作是一种特殊的“ “层层错错” ”,在反相畴界可以看成是界,在反相畴界可以看成是界面两侧晶体相对位移一个非点阵面两侧晶体相对位移一个非点阵平移矢量而成。如图的二维有序平移矢量而成。如图的二维有序相,反相畴界面就是由非点阵平相,反相畴界面就是由非点阵平移矢量移矢量造成的,这个矢量是造成的,这个矢量是反相畴界面的特征矢量。反相畴界面的特征矢量。APBAPB和和堆垛层错不同,层错的近邻原子堆垛层错不同,层错的近邻原子排列不正确,而排列不正确,而APBAPB只是近邻原只是近邻原子类型不正确,所以形成子类型不正确,所以形成APBAPB比比形成稳定的层错的限制性要少。形成稳定的层错的限制性要少。对于上图的二维结构,如果是无对于上图的二维结构,如果是无序结构,那么,一个最短的平移序结构,那么,一个最短的平移矢量是矢量是类型,它也就是全位类型,它也就是全位错的柏氏矢量类型。但是,如果错的柏氏矢量类型。但是,如果是有序结构,最短的平移矢量却是有序结构,最短的平移矢量却是是类型,即一个全位错的柏类型,即一个全位错的柏氏矢量为氏矢量为类型。因为位错的类型。因为位错的能量和柏氏矢量的平方成正比,能量和柏氏矢量的平方成正比,为了降低能量,这个全位错会分为了降低能量,这个全位错会分解为两个部分位错,它的柏氏矢解为两个部分位错,它的柏氏矢量反应为:量反应为: 2010+10 两个部分位错是同号的,所以相互排斥。当两个部分位错推开后,两个部分位错是同号的,所以相互排斥。当两个部分位错推开后,在它们之间留下一片在它们之间留下一片APB APB 。这两个部分位错的平衡距离由两个位。这两个部分位错的平衡距离由两个位错间的相互作用以及错间的相互作用以及APBAPB能之间取得平衡来确定。由此可见,能之间取得平衡来确定。由此可见,在在APBAPB的边缘是一个部分位错,这个位错的柏氏矢量又称作的边缘是一个部分位错,这个位错的柏氏矢量又称作APBAPB矢量矢量。 如果滑移面是密排面,超位错中的每一个位错还可以分解为两如果滑移面是密排面,超位错中的每一个位错还可以分解为两个个ShockleyShockley位错,并伴生层错。超位错中两位错的平衡距离取决位错,并伴生层错。超位错中两位错的平衡距离取决于反相界面能,从而取决于合金的长程有序度,合金的有序度于反相界面能,从而取决于合金的长程有序度,合金的有序度越高,超位错越窄。越高,超位错越窄。 有序相的畴以及反相界类型有序相的畴以及反相界类型 反相畴界的类型是有产生反相畴矢量R反相畴界的位置确定的。 反相畴界的类型是有产生反相畴矢量R反相畴界的位置确定。若R矢量处在滑移面,即Rn0,n是滑移面的单位法线矢量,这种反相界称保守的反相界;若Rnt0,这种反相界相当插入或抽出厚度为t的片层所构成。如果插入或抽出的那个片层包含A和B原子的分数不是该有序合金的计量成份的分数,则产生的反相界会改变成分,这种反相界称非保守反相界。一个保守反相界改变其取向时会变成非保守反相界。 右图中的右图中的ABAB反相界是保反相界是保守型的,守型的,BCBC反相界是非反相界是非保守型的,它含有超额保守型的,它含有超额的的“ “白白” ”原子,原子,CDCD反相反相界虽然不是由切动得来界虽然不是由切动得来的反相界,但它没有改的反相界,但它没有改变有序合金的计量成分,变有序合金的计量成分,所以也是保守型的。所以也是保守型的。 面心立方结构为基的有序合金中的位错面心立方结构为基的有序合金中的位错 CuAuICuAuI型(型(LILI0 0型)结构型)结构 若反相界面是若反相界面是( (010)010) ,R R矢量是矢量是 时因时因R R n n 0 0,所产生的反相,所产生的反相界是保守型的;如果界是保守型的;如果R R矢量是矢量是011/2011/2,虽然,虽然R R n n=1/2=1/2 0 0,但,但1/21/2恰好恰好是一层是一层(010)(010)面的厚度,面的厚度,即恰好插入或抽去一即恰好插入或抽去一层层(010)(010)面,这层面,这层(010)(010)面上面上A A和和B B原子的比例原子的比例符合合金的计量成分,符合合金的计量成分,所以产生的反相界仍所以产生的反相界仍是保守型的。是保守型的。这种结构可能产生反相界的位移矢量这种结构可能产生反相界的位移矢量R R是是 011/2011/2和和 。如果反相界面是如果反相界面是(110)(110)(或(或 )即)即 ( (或或 ) ),R R矢量是矢量是 (或011/2)时,Rn= ,而 恰好是一层(110)面的厚度,即恰好插入或抽去一层(110)或 面,这层面是纯Cu(A)或纯Au(B),它们的A和B原子的比例不是合金的计量成分,所以反相界是非保守的。 由于有序化的结果,使得由于有序化的结果,使得/2/2矢量中各矢量不是等同的。一类是矢量中各矢量不是等同的。一类是矢量从同类原子指向同类原子,另一类矢量是从一个原子指向异矢量从同类原子指向同类原子,另一类矢量是从一个原子指向异类原子。类原子。 afaf滑移可分解为滑移可分解为abab和和bfbf滑移,这时产生层错但不会形成滑移,这时产生层错但不会形成超位错。超位错。 acac+ +cece滑移矢量是超位错矢量。滑移矢量是超位错矢量。超位错的两个全位错又可以各超位错的两个全位错又可以各自分解为部分位错,使得超位自分解为部分位错,使得超位错由四个部分位错构成错由四个部分位错构成。全位错ac的分解,由a移到b,它改变了化学环境,又改变几何结构,所以既有APB又有层错;而再由b移到c后完成了一个全位错的滑移,层错消失,只有余下APB;全位错ce在有APB的基础上分解,由c移到d,因为d位置与e位置及原来的a位置的化学环境相同,所以在这一对部分位错间只有层错存在。 由于原来无序的的三个立方轴都可能是有序后四方结构的由于原来无序的的三个立方轴都可能是有序后四方结构的c c轴,所轴,所以一种畴的结构可以成为有序结构的孪晶,孪晶面是以一种畴的结构可以成为有序结构的孪晶,孪晶面是110110型面。型面。位错可以直接越过孪晶界面传播。位错可以直接越过孪晶界面传播。 当一个当一个 位错从一个畴(位错从一个畴(侧)进入这样的孪晶型的另一个畴侧)进入这样的孪晶型的另一个畴(侧)时,它产生的结构就不同。在侧)时,它产生的结构就不同。在侧它产生如上述的结构,侧它产生如上述的结构,而在而在侧,因为侧,因为 方向是由同类原子指向同类原子,所以当方向是由同类原子指向同类原子,所以当位错滑过后,不会产生位错滑过后,不会产生APBAPB。最后在孪晶界面两侧的位错结构如。最后在孪晶界面两侧的位错结构如上图所示。上图所示。 向错 如果是连续弹性介质,对于楔型向错,如同计算位错的应力场如果是连续弹性介质,对于楔型向错,如同计算位错的应力场一样,在去掉向错中心部分(半径为一样,在去掉向错中心部分(半径为r r0 0的圆管)外径为的圆管)外径为R R的圆柱的圆柱体,获得向错的应力场为:体,获得向错的应力场为: 单位长度向错的线的弹性能为:单位长度向错的线的弹性能为: 这个能量和柏氏矢量为这个能量和柏氏矢量为R R /2/2的位错的能量同一个数量级。对于晶的位错的能量同一个数量级。对于晶体,由于原子排列的周期性和对称性,向错必须受晶体中的旋转体,由于原子排列的周期性和对称性,向错必须受晶体中的旋转对称性所约束。对称性所约束。 在特殊情况下,例如,一对非常靠近的反号向错,因为它们的长在特殊情况下,例如,一对非常靠近的反号向错,因为它们的长程应力场可以对消,它相当于柏氏矢量为程应力场可以对消,它相当于柏氏矢量为2 2d dtan(tan( /2)/2)的刃位错,其中的刃位错,其中d d是这对向错间的距离,当是这对向错间的距离,当d d比较小时,他们是可能存在的。比较小时,他们是可能存在的。 在具有周期结构的病毒外壳中存在向错,可以证明,任何能够在具有周期结构的病毒外壳中存在向错,可以证明,任何能够形变为球面(拓朴学上等效于球面)的表面都必须有总旋转角形变为球面(拓朴学上等效于球面)的表面都必须有总旋转角为为720720 的向错。例如,上图的向错。例如,上图中,其基本对称元素是六角的,在中,其基本对称元素是六角的,在封闭的两端需要插入封闭的两端需要插入1212个五角形(如图中标以个五角形(如图中标以A A的地方),每一的地方),每一个这样的花样代表一个个这样的花样代表一个6060 向错。在人工制备的的纳米碳管中,向错。在人工制备的的纳米碳管中,碳管两端封闭部分区域也看到与此相同的结构。碳管两端封闭部分区域也看到与此相同的结构。 虽然在一般情况下向错在晶体中难以存在,但是在液晶和一些有序介质中,向错却是常见的线缺陷。在液晶中,向错是分子的指向矢场的奇异线。和晶体中的位错一样,向错必须终止表面或其它的向错上,也可以形成向错环。液晶中绕向错的旋转位移场必须与液晶的长程旋转对称一致。向错的精确的本质取决于各类不同的液晶相。下面只讨论向列相液晶中的楔型向错,以此来了解液晶中向错的一些基本概念。 在晶体中,柏氏回路用以定出位错的特征量-柏氏矢量b,而在液晶中,则用弗兰克-纳巴罗(Frank-Nabarro)回路来定出向错的特征量s。s是一个标量,它是表述液晶中指向矢绕着向错旋转量和方位的,它是向错的强度。 环绕向错线核心同时跟着指环绕向错线核心同时跟着指向场的位向所作的弗兰克向场的位向所作的弗兰克- -纳巴纳巴罗回路来定出罗回路来定出s s。设。设 ( (r r) )是在距是在距向错核心向错核心r r处指向矢的角度处指向矢的角度, 是从水平轴反时针到是从水平轴反时针到n n( (r r) )的角的角度,度,s s定义为绕向错闭回路归定义为绕向错闭回路归一化一化 ( (r r) )角的总和:角的总和: 式中totle是按弗兰克-纳巴罗闭合回路转动了360的指向矢总角度。向错的符号由如下的方法确定:如果指向矢转动的方向与转动方向相同为,即沃特拉过程要取走重叠多余液晶的为;指向矢转动的方向与转动方向相反为,即沃特拉过程要添进部分失去的液晶为。 上图的上图的s s是是1/21/2 。向列相液晶中的向列相液晶中的楔型向错的例子楔型向错的例子 向错核心是高度畸变的,它甚至可能变成各向同性的液体,这个向错核心是高度畸变的,它甚至可能变成各向同性的液体,这个核心的范围大约是一个分子的大小。向错周围的弹性畸变随着距核心的范围大约是一个分子的大小。向错周围的弹性畸变随着距向错的距离增加而缓慢地减小,其弹性应力是长程的。但是,与向错的距离增加而缓慢地减小,其弹性应力是长程的。但是,与晶体中的向错相比,晶体中的向错的畸变如此之大,使得晶体中晶体中的向错相比,晶体中的向错的畸变如此之大,使得晶体中很难出现向错,而在液晶中,向错的畸变可以通过粘滞性的流动很难出现向错,而在液晶中,向错的畸变可以通过粘滞性的流动得到部分松弛,这也是在液晶中出现大量向错的原因。单位长度得到部分松弛,这也是在液晶中出现大量向错的原因。单位长度向错在一个以向错为中心的圆柱体中的弹性能为:向错在一个以向错为中心的圆柱体中的弹性能为: 式中式中 是平均弹性常数,是平均弹性常数,s s是向错强度,是向错强度,r rc c是核心半径,是核心半径, E Ecorecore是是核心能量。这一表达式和位错能量的表达式相似,核心能量。这一表达式和位错能量的表达式相似, 和和s s相应于相应于位错的位错的 和和b b。两个强度分别为。两个强度分别为s s1 1和和s s2 2相距相距r r平行直向错间的交互作平行直向错间的交互作用力用力F F1-21-2为:为: 同号的向错是相互斥,异号的向错是相互吸引,他们还可以相互同号的向错是相互斥,异号的向错是相互吸引,他们还可以相互对消。对消。 典型的含有一定数量向错的向列相液晶中的指向矢场是复杂的。如果在向列相液晶中存在一组平行的向错,向列相中的指向矢会有一定的择尤排列,即出现织构。下图给出向列相液晶的指向矢织构的示意图,其中含五个强度s=+1/2和s= 1/2垂直是纸面平行排列的楔型向错,除向错核心外,指向矢的花样是连续的,这样的指向矢花样称条纹织构。 因为向错破断微米范围的光学性质,所以可以在显微镜下观察到因为向错破断微米范围的光学性质,所以可以在显微镜下观察到它。若用偏光显微镜在交叉偏光器下观察,可看到以向错为中心它。若用偏光显微镜在交叉偏光器下观察,可看到以向错为中心散开四个散开四个“ “黑刷黑刷” ”的区域,如果偏光器旋转,的区域,如果偏光器旋转,“ “黑刷黑刷” ”影像也旋影像也旋转,但在中心的向错保持不动,如果是正向错,其旋转方向与偏转,但在中心的向错保持不动,如果是正向错,其旋转方向与偏光器旋转方向相同,如果是负向错,则旋转方向相反。光器旋转方向相同,如果是负向错,则旋转方向相反。 向错具有长程应力场,这应力场导致向错之间、向错与位错、向错具有长程应力场,这应力场导致向错之间、向错与位错、向错与外表面、向错与所加的磁场、电场及流量场有交互作用。向错与外表面、向错与所加的磁场、电场及流量场有交互作用。外加的场会使指向矢沿着某一方向择尤再取向。当向错移动时,外加的场会使指向矢沿着某一方向择尤再取向。当向错移动时,指向矢场发生旋转。液晶材料退火时,向错移动,异号向错对消,指向矢场发生旋转。液晶材料退火时,向错移动,异号向错对消,导致向错织构粗化,甚至变成没有向错的的单畴。很多电导致向错织构粗化,甚至变成没有向错的的单畴。很多电- -光装光装置不希望有向错存在,因此控制向错是这些装置性能的决定性因置不希望有向错存在,因此控制向错是这些装置性能的决定性因素。素。 对于其它与液晶类似的一些有序介质,也会有向错存在。例对于其它与液晶类似的一些有序介质,也会有向错存在。例如,铁磁体或螺旋磁性介质,他们各原子的自旋是相互关联的,如,铁磁体或螺旋磁性介质,他们各原子的自旋是相互关联的,磁化矢量磁化矢量MM的分布可看作类似于液晶相中棒状分子的分布,在某的分布可看作类似于液晶相中棒状分子的分布,在某些条件下,为了降低静磁能,些条件下,为了降低静磁能,MM会发生某种旋转的分布,这些都会发生某种旋转的分布,这些都可以用向错来描述。可以用向错来描述。
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号