资源预览内容
第1页 / 共66页
第2页 / 共66页
第3页 / 共66页
第4页 / 共66页
第5页 / 共66页
第6页 / 共66页
第7页 / 共66页
第8页 / 共66页
第9页 / 共66页
第10页 / 共66页
亲,该文档总共66页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
电化学阻抗电化学阻抗测量技术测量技术与与电化学阻抗谱的数据处理电化学阻抗谱的数据处理浙江大学浙江大学 张鉴清张鉴清1电化学阻抗谱电化学阻抗谱电化学阻抗谱(Electrochemical ImpedanceSpectroscopy,简写为EIS),早期的电化学文献中称为交流阻抗(ACImpedance)。阻抗测量原本是电学中研究线性电路网络频率响应特性的一种方法,引用到研究电极过程,成了电化学研究中的一种实验方法。2电化学阻抗谱方法是一种以小振幅的正弦波电位(或电流)为扰动信号的电化学测量方法。由于以小振幅的电信号对体系扰动,一方面可避免对体系产生大的影响,另一方面也使得扰动与体系的响应之间近似呈线性关系,这就使测量结果的数学处理变得简单。同时,电化学阻抗谱方法又是一种频率域的测量方法,它以测量得到的频率范围很宽的阻抗谱来研究电极系统,因而能比其他常规的电化学方法得到更多的动力学信息及电极界面结构的信息。3阻抗与导纳 对于一个稳定的线性系统M,如以一个角频率为 的正弦波电信号(电压或电流)X为激励信号(在电化学术语中亦称作扰动信号)输入该系统,则相应地从该系统输出一个角频率也是 的正弦波电信号(电流或电压)Y,Y即是响应信号。Y与X之间的关系可以用下式来表示: Y=G(w ) X 如果扰动信号X为正弦波电流信号,而Y为正弦波电压信号,则称G为系统M的阻抗(Impedance)。如果扰动信号X为正弦波电压信号,而Y为正弦波电流信号,则称G为系统M的导纳(Admittance)。4阻纳是一个频响函数,是一个当扰动与响应都是电信号而且两者分别为电流信号和电压信号时的频响函数。 由阻纳的定义可知,对于一个稳定的线性系统,当响与扰动之间存在唯一的因果性时,GZ与GY 都决定于系统的内部结构,都反映该系统的频响特性,故在GZ与GY之间存在唯一的对应关系:Gz = 1/ Gy G是一个随频率变化的矢量,用变量为频率f或其角频率的复变函数表示。故G的一般表示式可以写为: G(w ) = G(w ) + j G”(w ) 5阻抗或导纳的复平面图阻抗或导纳的复平面图复合元件(RC)频响特征的阻抗复平面图 导纳平面图6阻抗波特(阻抗波特(Bode)图)图复合元件(RC)阻抗波特图7电化学阻抗谱电化学阻抗谱的基本条件的基本条件因果性条件:当用一个正弦波的电位信号对电极系统进行扰动,因果性条件要求电极系统只对该电位信号进行响应。线性条件。当一个状态变量的变化足够小,才能将电极过程速度的变化与该状态变量的关系作线性近似处理。稳定性条件。对电极系统的扰动停止后,电极系统能回复到原先的状态,往往与电极系统的内部结构亦即电极过程的动力学特征有关。8因果性条件因果性条件当用一个正弦波的电位信号对电极系统进行扰动,因果性条件要求电极系统只对该电位信号进行响应。这就要求控制电极过程的电极电位以及其它状态变量都必须随扰动信号正弦波的电位波动而变化。控制电极过程的状态变量则往往不止一个,有些状态变量对环境中其他因素的变化又比较敏感,要满足因果性条件必须在阻抗测量中十分注意对环境因素的控制。 9线性条件线性条件由于电极过程的动力学特点,电极过程速度随状态变量的变化与状态变量之间一般都不服从线性规律。只有当一个状态变量的变化足够小,才能将电极过程速度的变化与该状态变量的关系作线性近似处理。故为了使在电极系统的阻抗测量中线性条件得到满足,对体系的正弦波电位或正弦波电流扰动信号的幅值必须很小,使得电极过程速度随每个状态变量的变化都近似地符合线性规律,才能保证电极系统对扰动的响应信号与扰动信号之间近似地符合线性条件。总的说来,电化学阻抗谱的线性条件只能被近似地满足。我们把近似地符合线性条件时扰动信号振幅的取值范围叫做线性范围。每个电极过程的线性范围是不同的,它与电极过程的控制参量有关。如:对于一个简单的只有电荷转移过程的电极反应而言,其线性范围的大小与电极反应的塔菲尔常数有关,塔菲尔常数越大,其线性范围越宽。10稳定性条件稳定性条件对电极系统的扰动停止后,电极系统能否回复到原先的状态,往往与电极系统的内部结构亦即电极过程的动力学特征有关。一般而言,对于一个可逆电极过程,稳定性条件比较容易满足。电极系统在受到扰动时,其内部结构所发生的变化不大,可以在受到小振幅的扰动之后又回到原先的状态。在对不可逆电极过程进行测量时,要近似地满足稳定性条件也往往是很困难的。这种情况在使用频率域的方法进行阻抗测量时尤为严重,因为用频率域的方法测量阻抗的低频数据往往很费时间,有时可长达几小时。这么长的时间中,电极系统的表面状态就可能发生较大的变化11电化学阻抗谱的数据处理与解析电化学阻抗谱的数据处理与解析1.数据处理的目的与途径数据处理的目的与途径 2.阻纳数据的非线性最小二乘法拟合原理阻纳数据的非线性最小二乘法拟合原理 3.从阻纳数据求等效电路的数据处理方法从阻纳数据求等效电路的数据处理方法 (Equivcrt) 4.依据已知等效电路模型的数据处理方法依据已知等效电路模型的数据处理方法 (Impcoat)5.依据数学模型的数据处理方法依据数学模型的数据处理方法 (Impd) 12数据处理的目的数据处理的目的 1.1.根据测量得到的根据测量得到的EIS谱图谱图, 确定确定EIS的等效的等效电路或数学模型,与其他的电化学方法相结电路或数学模型,与其他的电化学方法相结合,推测电极系统中包含的动力学过程及其合,推测电极系统中包含的动力学过程及其机理;机理;2.2.如果已经建立了一个合理的数学模型或等如果已经建立了一个合理的数学模型或等效电路,那么就要确定数学模型中有关参数效电路,那么就要确定数学模型中有关参数或等效电路中有关元件的参数值,从而估算或等效电路中有关元件的参数值,从而估算有关过程的动力学参数或有关体系的物理参有关过程的动力学参数或有关体系的物理参数数 13数据处理的途径数据处理的途径 阻抗谱的数据处理有两种不同的途径:阻抗谱的数据处理有两种不同的途径: 依据已知等效电路模型依据已知等效电路模型或数学模型的数据数学模型的数据处理处理途径途径 从阻纳数据求等效电路的数据处理从阻纳数据求等效电路的数据处理途径途径14阻纳数据的非线性最小二乘法拟合原理阻纳数据的非线性最小二乘法拟合原理一般数据的非线性拟合的最小二乘法一般数据的非线性拟合的最小二乘法 若若G是是变变量量X和和m个个参参量量C1,C2,,Cm的的非非线线性性函函数数,且已知函数的具体表达式:且已知函数的具体表达式: G=G( X,C1,C2,,Cm ) 在在控控制制变变量量X的的数数值值为为X1,X2,, Xn 时时,测测到到n个个测测量量值值(n m):g1,g2,g n。非非线线性性拟拟合合就就是是要要根根据据这这n个个测测量量值值来来估估定定m个个参参量量C1,C2,Cm的的数数值值,使使得得将将这这些些参参量量的的估估定定值值代代入入非非线线性性函函数数式式后后计计算算得得到到的的曲曲线线(拟拟合合曲曲线线)与与实实验验测测量量数数据据符符合合得得最最好好。由由于于测测量量值值gi (i = 1,2,n) 有有随随机机误误差差,不不能能从从测测量量值值直直接接计计算算出出m个个参参量量,而而只只能能得到它们的最佳估计值。得到它们的最佳估计值。15现现在在用用C1,C2,Cm表表示示这这m个个参参量量的的估估计计值值,将将它它们们代代入入到到式式 (8.2.1) 中中,就就可可以以计计算算出出相相应应于于Xi的的Gi的的数数值值。gi - Gi 表表示示测测量量值值与与计计算算值值之之间间的的差差值值。在在1,2,m为为最最佳佳估估计计值值时时,测测量量值值与与估估计计值值之之差差的的平平方方和和S的的数数值值应应该该最最小小。 就称为目标函数:就称为目标函数: = (gi - Gi )2 由统计分析的原理可知,这样求得的估计值由统计分析的原理可知,这样求得的估计值C1,C2,Cm为无偏估计值。求各参量最佳估计值为无偏估计值。求各参量最佳估计值的过程就是拟合过程的过程就是拟合过程 16拟合过程主要思想如下 :假假设设我我们们能能够够对对于于各各参参量量分分别别初初步步确确定定一一个个近近似似值值C0k , k = 1, 2, , m,把把它它们们作作为为拟拟合合过过程程的的初初始值。令初始值与真值之间的差值始值。令初始值与真值之间的差值C0k Ck k, k = 1, 2, , m,于于是是根根据据泰泰勒勒展展开开定定理理可可将将Gi 围围绕绕C0k , k = 1, 2, , m 展展开开,我我们们假假定定各各初初始始值值C0k与与其其真真值值非非常常接接近近,亦亦即即, k非非常常小小 (k = 1, 2, , m), 因因此此可可以以忽略式中忽略式中 k 的高次项而将的高次项而将Gi近似地表达为近似地表达为 :17 在各参数为最佳估计值的情况下,S的数值为最小,这意味着当各参数为最佳估计值时,应满足下列m个方程式:18可以写成一个由可以写成一个由m个线性代数方程所组成的方程组个线性代数方程所组成的方程组从方程组可以解出1,2,.,m的值,将其代入下式,即可求得Ck的估算值: Ck C0k + k, k = 1, 2, , m,计算得到的参数估计值Ck比C0k 更接近于真值。在这种情况下可以用由上式求出的Ck作为新的初始值C0k,重复上面的计算,求出新的Ck 估算值这样的拟合过程就称为是“均匀收敛”的拟合过程。19阻纳数据的非线性最小二乘法拟合阻纳数据的非线性最小二乘法拟合在进行阻纳测量时,我们得到的测量数据是一个复数:G(X)=G(X)+jG”(X)在阻纳数据的非线性最小二乘法拟合中目标函数为: = (gi, - Gi )2 + (gi” - Gi” )2 或为: = Wi(gi, - Gi )2 + Wi(gi” - Gi” )2 20从阻纳数据求等效电路的数据处理方法从阻纳数据求等效电路的数据处理方法电路描述码电路描述码我们对电学元件、等效元件,已经用符号我们对电学元件、等效元件,已经用符号RC、RL或或RQ表示了表示了R与与C、L或或Q串联组串联组成的复合元件,用符号成的复合元件,用符号 (RC) 、(RL) 或或(RQ)表示了表示了R与与C、L或或Q并联组成的复合并联组成的复合元件。现在将这种表示方法推广成为描述元件。现在将这种表示方法推广成为描述整个复杂等效电路的方法,整个复杂等效电路的方法, 即形成电路描即形成电路描述码述码 (Circuit Description Code, 简写为简写为CDC)。规则如下:。规则如下: 21凡由等效元件串联组凡由等效元件串联组成的复合元件,将这成的复合元件,将这些等效元件的符号并些等效元件的符号并列表示。例如凡由等列表示。例如凡由等效元件并联组成的复效元件并联组成的复合元件,用括号内并合元件,用括号内并列等效元件的符号表列等效元件的符号表示。如图中的复合等示。如图中的复合等效元件以符号(效元件以符号(RLCRLC)表示。复合元件,可表示。复合元件,可以用符号以用符号RLC或或CLR表示表示 22凡由等效元件并联凡由等效元件并联组成的复合元件,组成的复合元件,用括号内并列等效用括号内并列等效元件的符号表示。元件的符号表示。例如图中的复合等例如图中的复合等效元件以符号效元件以符号(RLC)表示。)表示。 23对于复杂的电路,首先将整个电路分解对于复杂的电路,首先将整个电路分解成个或个以上互相串联或互相并联成个或个以上互相串联或互相并联的的“盒盒”,每个盒必须具有可以作为输,每个盒必须具有可以作为输入和输出端的两个端点。这些盒可以是入和输出端的两个端点。这些盒可以是等效元件、简单的复合元件(即由等效等效元件、简单的复合元件(即由等效元件简单串联或并联组成的复合元件)、元件简单串联或并联组成的复合元件)、或是既有串联又有并联的复杂电路。对或是既有串联又有并联的复杂电路。对于后者,可以称之为复杂的复合元件。于后者,可以称之为复杂的复合元件。如果是简单的复合元件,就按规则()如果是简单的复合元件,就按规则()或()表示。于是把每个盒,不论其或()表示。于是把每个盒,不论其为等效元件、简单的复合元件还是复杂为等效元件、简单的复合元件还是复杂的复合元件,都看作是一个元件,按各的复合元件,都看作是一个元件,按各盒之间是串联或是并联,用规则()盒之间是串联或是并联,用规则()或()表示。然后用同样的方法来分或()表示。然后用同样的方法来分解复杂的复合元件,逐步分解下去,直解复杂的复合元件,逐步分解下去,直至将复杂的复合元件的组成都表示出来至将复杂的复合元件的组成都表示出来为止。为止。 24按规则()将这一等效电路表示为:RCE-1按规则(),CE-1可以表示为(QCE-2)。因此整个电路可进一步表示为:R(QCE-2)将复合元件CE-2表示成(Q(WCE-3)。整个等效电路就表示成:R(Q(WCE-3)剩下的就是将简单的复合元件CE-3表示出来。应表示为(RC)。于是电路可以用如下的CDC表示:R(Q(W(RC)25R(Q(W(RC)第第个个括括号号表表示示等等效效元元件件Q与与第第个个括括号号中中的的复复合合元元件件并并联联,第第个个括括号号表表示示等等效效元元件件W与与第第个个括括号号中中的的复复合合元元件件串串联联,而而第第三三个个括括号号又又表表示示这这一一复复合合元元件件是是由由等等效效元元件件R与与C并并联联组组成成的的。现现在在我我们们用用“级级”表表示示括括号号的的次次序序。第第级级表表示示第第个个括括号号所所表表示示的的等等效效元元件件,第第级级表表示示由由第第个个括括号号所所表表示示的的等等效效元元件件,如如此此类类推推。由此有了第()条规则:由此有了第()条规则:4.4.奇数级的括号表示并联组成的复合元件,偶数级的括奇数级的括号表示并联组成的复合元件,偶数级的括号则表示串联组成的复合元件。把算作偶数,这一规号则表示串联组成的复合元件。把算作偶数,这一规则可推广到第级,即没有括号的那一级。例如,图则可推广到第级,即没有括号的那一级。例如,图.3所表示的等效电路,可以看成是一个第级的复合元件所表示的等效电路,可以看成是一个第级的复合元件 26整个等效电路整个等效电路CDC表示为表示为(C(Q(R(RQ)(C(RQ)第()条规则:第()条规则:5. 5. 若在右括号后紧接着有若在右括号后紧接着有一个左括号与之相邻,则一个左括号与之相邻,则在右括号中的复合元件的在右括号中的复合元件的级别与后面左括号的复合级别与后面左括号的复合元件的级别相同。这两个元件的级别相同。这两个复合元件是并联还是串联,复合元件是并联还是串联,决定于这两个复合元件的决定于这两个复合元件的CDC是放在奇数级还是是放在奇数级还是偶数级的括号中。偶数级的括号中。 27计算等效电路等效电路阻纳根据上述条规则,可以写出等效电路的电路描述码(CDC),就可以计算出整个电路的阻纳。其出发点是下面三条:()对于由串联组成的复合元件,计算它的阻抗,只需将互相串联的各组份的阻抗相加.对于由并联组成的复合元件,计算它的导纳,只需将互相并联的各组份的导纳相加。28()阻抗和导纳之间互相变换的公式()阻抗和导纳之间互相变换的公式 Gl-1 = Gl/(Gl2 + Gl”2 ) + j Gl”/(Gl2 + Gl”2 ) ()计算电路的阻纳时,()计算电路的阻纳时, 先从最高级的复合元件算起,先从最高级的复合元件算起,也就是先计算电路也就是先计算电路CDC最里面的括号所表示的复合元件最里面的括号所表示的复合元件的阻纳,逐级阻纳的计算公式是:的阻纳,逐级阻纳的计算公式是: Gl-1 = G*l-1 + G-1l式中式中G*l-1是在第是在第i-1级复合元件中与第级复合元件中与第i级复合元件并联级复合元件并联(当(当i-1为奇数时)或串联(当为奇数时)或串联(当i-1为偶数时)的组份的导为偶数时)的组份的导纳或阻抗纳或阻抗, 若这些组份都是等效元件若这些组份都是等效元件, 则则G*i-1就是这些等就是这些等效元件的导纳(效元件的导纳(i-1为奇数)或阻抗(为奇数)或阻抗(i-1为偶数)之和。为偶数)之和。若这些组份中还包括另一个若这些组份中还包括另一个i级的复合元件,可以用级的复合元件,可以用G-1l代表它的阻纳,则在代表它的阻纳,则在Gi-1中还应包括中还应包括Gl-1这一项。这一项。 29计计算算从从最最高高级级开开始始。最最高高级级为为级级,是是奇奇数数,应应计计算算其其导纳:导纳: G3 = 1 /R4 +j C 再接着计算第级复合元件的阻抗:再接着计算第级复合元件的阻抗: G2 = Zw3 + G3-1然后计算第级复合元件的导纳:然后计算第级复合元件的导纳: G1 = YQ3 + G2-1最后计算第级亦即整个电路的阻抗:最后计算第级亦即整个电路的阻抗: G0 = R0 + G1-130计算阻纳对电路中各元件的参数的偏导值计算阻纳对电路中各元件的参数的偏导值根据电路的表达式,可以推导出偏导的表达式,且求得偏导值。但那样做很繁复,也不能编制出一个普遍适用的数据处理软件。利用CDC则可以较简便地计算整个电路对电路中各元件的参数的偏导。出现在第i-1级的复合元件中的等效元件的阻纳G*i-1不会出现在更高级别的第i级复合元件中,故只有级别等于和低于第i-1级的复合元件的阻纳对这一元件的参数有偏导,所以无须求第i级和更高级复合元件对这一等效元件参数的偏导31阻纳数据解析的基础阻纳频谱可以由于等效元件或复合元件对频响敏感的频率范围不同,在不同的频率段反映出不同等效元件或复合元件的特征,也可以由于等效元件或复合元件所取的参数值不同而在不同频率段反映出这些元件在取值不同时的特征。因此,可以通过初级拟合,即直线拟合和圆拟合,以及分段部分拟合的方法来确定该段曲线所对应的那部分电路以及有关参数。故这个方法可称之为阻纳频谱的解析。32直线拟合与圆拟合是阻纳数据解析的基础直线拟合与圆拟合是阻纳数据解析的基础。(RC)、(RL)和(RQ)因而也包括(RW)型的复合元件的频响曲线,在导纳平面图上呈直线而在阻抗平面上呈现为半圆或一段圆弧。RC、RL和RQ型的复合元件的频响曲线在阻抗平面上都表现为一条直线,而在导纳平面是则表现为一个半圆或一段圆弧。33阻纳频谱的解析过程解析过程一般可以从阻纳谱的高频一端开始。由于串联的组分(等效元件或复合元件)的阻抗相加,故在阻抗平面上减去一个等效元件或复合元件的频率响应以后,留下的是同它相串联的其他组份的频率响应。这留下的组分如为复合元件,应该是由更高级别组分并联构成的电路,故可到导纳平面上去减去并联的元件或简单复合元件。在阻抗平面上减去一个组份后再变换到导纳平面上去减掉一个组份时,就相应地产生一个奇数级的括号。同样,当在导纳平面一减去一个组份后再变换到阻抗平面上减去一个组份,就相应地产生一个偶数级的括号。最小二乘法拟合就可以应用这些初始值。34例如,我们在阻抗平面上减去例如,我们在阻抗平面上减去R1,这时的,这时的CDC可以写为:可以写为: R?这里这里“?”表示为剩下的同表示为剩下的同R1串联的部份。串联的部份。 进一步可变进一步可变换至导纳平面上利用直线拟合修正换至导纳平面上利用直线拟合修正Q2的参数与的参数与R3的估算的估算值。若修正后仍回到阻抗平面,减去复合元件(值。若修正后仍回到阻抗平面,减去复合元件(Q2R3),),这时的这时的CDC可表示为:可表示为: R(RQ)?意为剩下的是同意为剩下的是同R(QR) 串联的组份。但倘若减去串联的组份。但倘若减去R1后变后变换到导纳平面,换到导纳平面, 经过直线拟合修正后在导纳平面上减去经过直线拟合修正后在导纳平面上减去Q2,此时的,此时的CDC是是 R(Q(R?)35依据已知等效电路模型的数据处理方法依据已知等效电路模型的数据处理方法为了消除各等效元件之间的互相影响,在阻纳数据为了消除各等效元件之间的互相影响,在阻纳数据的处理中仍可以用解析法,逐个减去已求得参数值的处理中仍可以用解析法,逐个减去已求得参数值的那些等效元件。由于已预先选定了等效电路,故的那些等效元件。由于已预先选定了等效电路,故逐个求解与减扣的步骤也就确定了。在用逐个求解与减扣的步骤也就确定了。在用EIS方法方法研究涂层复盖的电极系统时,根据我们所研究过的研究涂层复盖的电极系统时,根据我们所研究过的不同涂层体系的阻抗谱特性以及涂层的结构、性能,不同涂层体系的阻抗谱特性以及涂层的结构、性能,提出了七种不同的等效电路作为其物理模型,并依提出了七种不同的等效电路作为其物理模型,并依照上述的思路编制了阻抗数据处理软件照上述的思路编制了阻抗数据处理软件Coat1。下。下面以面以Coat1为例来介绍依据已知等效电路模型的数为例来介绍依据已知等效电路模型的数据处理方法据处理方法 36有两个容抗弧的阻抗谱的两种有两个容抗弧的阻抗谱的两种不同的等效电路模型不同的等效电路模型R(Q1R1)(Q2R2)R(Q1(R1(Q2R2)37在两段圆弧可分开的情况下,式(1)与(2)都可在高频端近似地简化为:38若在高频端的圆弧上选取了N1个数据点,并设该段圆弧的圆心为(X0,Y0),半径为R0,第k个选取点为(Zk,Zk)如图,那么,这N1个实验点对拟合圆弧的差方和为:39扣除Rs与R1的影响,可得到,Y= Y0 N1Cos(np/2)+jY0 N1Sin(np/2)故有,|Y|2 = ( Y0 N1)2Log|Y| = Log Y0 + N1 Log 40若选取式(1)为阻抗谱的模型,可先将求得的Rs,R1与Q1的参数值代入来计算在低频圆弧上所取的N2个点的阻抗值,然后从N2个实测阻抗数据中直接减去它,将经过扣除的数据对下列进行拟合处理:若选取式(2)为阻抗谱的模型,则先在阻抗平面上扣除Rs,变换到导纳平面后再扣除Q1的导纳,再变换到阻抗平面减去R1,然后变换到导纳平面后再用处理(RQ)复合元件的方法求取R2及Y02,n2。应该注意到,(RQ)复合元件的处理中采取的是直线拟合的方法。41依据数学模型的数据处理方法依据数学模型的数据处理方法在电极系统的非法拉第阻抗仅来自电极系统双电层电容的情况下,整个电极系统的阻抗可以由下式来表示:Z=Rs+1/(jw w C + YF0 )YF0 = 1 / Rt + Bi/( ai + jw w ) ) 42金属电极的电化学阻抗谱金属电极的电化学阻抗谱(EIS)理论)理论43一前言一前言电化学阻抗谱(ElectrochemicalImpedanceSpectroscopy,简写为EIS),早期的电化学文献中称为交流阻抗谱(ACImpedanceSpectroscopy)。阻抗测量属于“黑箱法”中用正弦波电信号作为扰动信号测量传输函数传输函数的方法,原本在电学中用于研究线性电路网络频率响应特性,引用到研究电极过程,成了电化学研究中的一种实验方法。44EIS测量的优点测量的优点EIS是频率域的测量,电极过程的快速步骤的响应由高频部分的阻抗谱反映,而慢速步骤的响应由低频部分的阻抗谱反映,可以从阻抗谱中显示的弛豫过程(relaxationprocess)的时间常数的个数及其数值大小获得各个步骤的动力学信息和电极表面状态变化的信息,还可以从阻抗谱观察电极过程中有无传质过程的影响。45阻抗谱测量的前提条件阻抗谱测量的前提条件 扰动信号与响应信号之间必须具有因果关系,响应信号必须是扰动信号的线性函数,被测量的体系在扰动下是稳定的。这就是这就是“因果性(因果性(causality)线性线性(linearity)和稳定性()和稳定性(stability)”三个前提条件。三个前提条件。一般用Z 表示阻抗(impedance),阻抗的倒数称为导纳(admittance),一般用Y 表示。两者合称阻纳(immittance)。对于导纳来说,还必须满足的一个条件是:导纳必须为有限值。导纳必须为有限值。也即,被测体系的阻抗被测体系的阻抗不可为零不可为零。46电化学阻抗的简单表达式电化学阻抗的简单表达式YNF为非法拉第导纳非法拉第导纳,是电极/溶液相界区的双电层的充放电过程的导纳,通常表示为 (1)(2a)或在有弥散效应的情况下(2b)(3)YF为法拉第导纳,法拉第导纳,即,电极反应过程引起的导纳:IF为法拉第电流密度,亦即电极反应速度。47传统的EIS研究是在研究可逆的电极反应过程的基础上发展起来的,用线性元件作为等效元件,构成能给出与所测到的EIS一样谱图的等效电路,主要是用等效电容表示双电层电容,用等效电阻表示法拉第阻抗。一般只有一个弛豫过程。分析阻抗谱图的方法完全照搬电学中的方法,所以长期以来称EIS研究方法为交流(AC)阻抗谱研究方法。由于可逆的电化学反应过程在扰动消失后就恢复到热力学平衡的状态,不存在稳定性条件问题,所以在传统的EIS研究中从未考虑过EIS的稳定性条件问题。48传统方法应用于不可逆电极反应过程传统方法应用于不可逆电极反应过程所遇到的困难所遇到的困难同一电极反应在不同条件下的EIS可以对应于不同的等效电路。在不可逆电极反应情况下弛豫过程的时间常数往往不止1个,可以有2或3个。有时等效电路中有等效电感。无法解释等效电感的物理意义。所以,我们在八十年代末研究了不可逆电极反应过所以,我们在八十年代末研究了不可逆电极反应过程的特点建立了我们的程的特点建立了我们的EIS理论体系。理论体系。49二理论框架二理论框架 法拉第电流密度 IF 在恒温恒压下是电极电位E 和电极表面状态变量Xi 以及电极表面溶液层中反应粒子的浓度cj 的函数:(4)Xi必须是能对扰动E作出响应的表面状态变量,否则不能在EIS中显现其存在。按Maclaurin级数展开后,根据线性条件,有:(5)足标ss表示steadystate 。50对于可逆过程,可以用Nernst方程来表示电极电位E与反应粒子浓度c 的关系。但对于不可逆电极过程,cj 直接与电极反应速度IF 有关,而与电极电位E 没有显函数的关系,所以式(5)最后一项要作如上处理。令就得到YF 的表达式。(6)51法拉第阻抗(法拉第阻抗(ZF)表达式)表达式 ZF0表示不涉及传质过程而只涉及电极反应表面过程的法拉第阻抗,Zd 是由于传质过程,即,扩散过程的影响而引起的阻抗。根据反应动力学式中反应速度IF与反应物的浓度cj的关系以及有关扩散过程的Fick第一定律和第二定律与Faraday定律,只要知道了ZF0,不难求出Zd 。(7) 所以关键问题是要得到 ZF0 或其倒数或其倒数YF0的表达式。的表达式。我们的理论的核心问题就是这个问题。我们的理论的核心问题就是这个问题。52最简单的情况是除了电极电位E 以外,没有其它表面状态变量。 (8)(9)情况同可逆电极反应过程的电化学阻抗谱一样。整个阻抗谱图显示一个容抗弧,电化学阻抗谱具有1个时间常数。但若除了电极电位E 以外,还有表面状态变量Xi,阻抗谱图就比较复杂,表面状态变量个数愈多,阻抗谱图就愈复杂。53在电极系统受到E扰动时,表面状态变量也应作出相应的瞬态响应,而且这种响应变化的速度应该是电极电位E和所有表面状态变量的函数:根据线性条件,按Maclaurin级数展开,取线性项:(10),在以正弦波电信号扰动时,Xi 值的响应也应为正弦波。 (11)54稳定性条件稳定性条件由(10)和(11)两式可得(12)由此可得的表达式。但我们提出,在此过程中必须考虑测量不可逆电极反应过程的电化学阻抗谱的一个前提条件:稳定性条件稳定性条件,也即,Jacobi 矩阵矩阵 Jik 的本征的本征值必须为负实数值必须为负实数,否则,不可逆电极反应过程受到扰动后不能恢复到扰动前的定常态。 55若除电极电位若除电极电位E外有外有1个表面状态变量个表面状态变量X ,令若除了电极电位若除了电极电位E 外,还有外,还有2状态变量状态变量X1和和X2,则 ,(13)稳定性条件是:稳定性条件是:,即,a 0。 (14)56有有2个表面状态变量个表面状态变量X1和和X2情况下的稳定性条件是:情况下的稳定性条件是: Kramers-Kronig转换关系的验证转换关系的验证若一个物理量P()可以由下式给出:且满足稳定性和有限性(在为0至内都是有限值)条件,则有: (15)即所谓K-K转换关系。我们证明,式(式(13)和式()和式(14)只有在)只有在分别满足其稳定性条件时,才可以按式(分别满足其稳定性条件时,才可以按式(15)进行)进行K-K转换。转换。57三各种等效电路的出现条件三各种等效电路的出现条件 对于除了电极电位对于除了电极电位E外,还有外,还有1个表面状态变量个表面状态变量X 的情况的情况,此时整个电化学阻抗谱具有2个时间常数。由于m和b都可能为正为负,所以它们的相乘,也有正负两种情况: (1)m 和和b同号,同号,B = m b 0 在这情况下式(13)可以写成: (16)这相当于一个包含有等效电感的等效电感的等效电路的导纳。(17)58不可逆电极过程中出现感抗条件的物不可逆电极过程中出现感抗条件的物理意义:理意义: 我们首次从理论上明确了我们首次从理论上明确了EIS中出现感抗的条件:中出现感抗的条件:B 0,亦即,亦即,m 和和b 同号。同号。式(16)等号右侧的第一项反映电位的改变通过引起电双层中电场强度的改变而使IF 改变,这一项永远为正值。该式的等号右侧的第二项反映电位的改变通过它对表面状态变量X 的影响而使IF 改变。如这一项也为正值,那就表明电位的改变通过上述两种途径对电位的改变通过上述两种途径对法拉第法拉第电流密度所电流密度所起的作用的方向是一致的,这就会引起起的作用的方向是一致的,这就会引起EIS中的感抗成分。中的感抗成分。我们应用这一理论结果研究了不锈钢的小孔腐蚀发生过程中的自催化效应和界面型缓蚀剂的吸附特点。 59(2)m 与与b异号,异号,B = m b 0用|B|表示B的绝对值。于是由式(13)可以写出电极表面过程的法拉第阻抗:(18)(19)60在B 0,B 0 这一大类有2种等效电路,即:相应于种等效电路,即:相应于AT - BD 0 时时有有1种等效电路:种等效电路: 相应的阻抗谱图只有1种,即,除高频为容抗弧外,中频和低频为2个感抗弧。62A 0,B 0 而而AT - BD 0,B0的情况下,共有共有2种等效电路,种等效电路,相应地有相应地有2种类型的阻抗谱图。种类型的阻抗谱图。( 2)A 0 (3)A 0,0 以上两大类型的等效电路相同,但阻抗谱有不同的特点。这两大类共有的等效电路为:63 相应于A 0的情况,有有3种类型的阻抗谱图。种类型的阻抗谱图。相应于A 0,0的情况,有有2种类型的阻抗谱图。种类型的阻抗谱图。(4)A 0 ,B 0时的等效电路: 这种等效电路可以有有5种类型的阻抗谱种类型的阻抗谱图。图。64另一种是相应于A0,B0而且|A|T - |B|D 0时的等效电路。这种等效电路有有2种类型的阻抗谱图。种类型的阻抗谱图。 总的说来,我们论证了在总的说来,我们论证了在除电极电位除电极电位E外还有外还有2个表面状态个表面状态变量变量X1和和X2的情况下,可能出现的情况下,可能出现5种等效电路和种等效电路和14种类型的种类型的阻抗谱图,并论证了它们出现的条件。阻抗谱图,并论证了它们出现的条件。65致致 谢谢谢谢各位!谢谢各位!请多提宝贵意见!请多提宝贵意见!66
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号