资源预览内容
第1页 / 共392页
第2页 / 共392页
第3页 / 共392页
第4页 / 共392页
第5页 / 共392页
第6页 / 共392页
第7页 / 共392页
第8页 / 共392页
第9页 / 共392页
第10页 / 共392页
亲,该文档总共392页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
绪论绪论绪论绪论 IntroductionIntroduction 化学现象与物理现象的联系一、什么是物理化学一、什么是物理化学化学反应 物理现象伴随发生影响物理化学由此联系出发研究化学反应的普遍规律 物理化学的研究方法(1)理论基础:热力学、统计力学、量子力学(2)实验方法:以物理方法为主(3)数学演绎方法所以,物理化学是集化学、物理及数学于一身的一门学科。即以物理和数学的方法研究化学问题。二、物理化学的任务二、物理化学的任务(1) 化学热力学:方向,限度,能量转换, 宏观性质(2) 化学动力学:反应速率及机理(3) 物质结构:宏观性质与微观结构的关系三、物理化学学习方法三、物理化学学习方法 物理化学的重要性 物理化学的学科特点:公式、概念、方法 学习方法四、数学准备四、数学准备例如:复合函数微分法则此公式是以下数学处理方法的结果:令:则在y不变的条件下此式两端同除以dx,得大纲(一)大纲(一) 气体的气体的PVT关系关系1、理想气体状态方程2、理想气体混合物3、气体的液化及临界参数4、真实气体状态方程5、对应状态原理及普遍化压缩因子图大纲大纲 考试要求考试要求(一)(一) 气体的气体的PVT关系关系掌握理想气体状态方程和混合气体的性质(道尔顿分压定律、阿马加分容定律)。了解实际气体的状态方程(范德华方程)。了解实际气体的液化和临界性质。了解对应状态原理与压缩因子图。第一章第一章第一章第一章 气气气气 体体体体 Chapter 1 GasChapter 1 Gas11 理想气体 (Ideal gas)一、理想气体状态方程一、理想气体状态方程 (Equation of state for ideal gas)p, V, T, n的意义及单位:Vm:摩尔体积,m3 mol-1R:摩尔气体常数,8.314 JK-1mol-1 理想气体的定义及方程的用途定义:在任意温度和压力下都严格服从理想气体状态方程的气体用途:对于一定量的理想气体,pVT中有一个不独立。所以p可叙述为:将物质的量为n的理想气体置于一个温度为 T体积为V的容器中,气体所具有的压力。 理想气体的微观模型:(1)分子是几何点(2)无分子间力 低压实际气体可近似当作理想气体二、分压定律二、分压定律 (The Law of Partial Pressure)1. 分压:在气体混合物中,定义 pB代表组分气体B对气体混合物压力的贡献。2. 分压定律:对理想气体混合物 在理想气体混合物中,任意组分气体的分压等于同温下该气体在容器中单独存在时的压力12 实际气体 (Real gas)一、实际气体状态方程一、实际气体状态方程 (Equation of state for real gas)问题提出: 用理想气体状态方程计算 实际气体,产生偏差。至今实际气体状态方程已约200个 Van der Waals方程思想:对实际气体分别做两项修正方程:(1) a和b:Van der Waals常数,可查,意义(2)方程的优缺点:二、对比状态原理二、对比状态原理 (The principle of corresponding states)1. 几个概念(1) 蒸气压:在讨论气液转化时常用定义:在一定条件下,能与液体平衡共存的它的蒸气的压力水水水蒸气, pT=const.例如: 是液体的性质:表示液体挥发的难易。其大小决定于液体所处的状态(主要决定于温度)。沸点:蒸气压外压时的温度,通常是指蒸气压101325 Pa,称(正常)沸点。 (2) 临界参数和临界点: 定义:Tc利用加压手段使气体液化的最高温度pc在临界温度时使气体液化所需的最小压力Vc在临界温度和临界压力时气体的摩尔体积 是物性参数 不易测定(3) 对比参数和对比状态: 定义: 范氏对比方程:1881年将范氏方程应用于临界点并进行纯数学处理,得到代入原方程并整理Van der Waals 对比方程启示:f (pr, Vr, Tr)=0。即不同气体如果它们具有相同的pr和Tr,则Vr必相同。称它们处在相同对比状态相同对比状态。2. 对比状态原理:处在相同对比状态的各种气体(乃至液体),具有相近的物性(如摩尔热容、膨胀系数、压缩系数、黏度等)。三、用压缩因子图计算实际气体三、用压缩因子图计算实际气体 (Calculation of real gases with compression factor figure)(1) Z的意义:压缩因子。Z与1的差值代表气体对理想气体的偏差程度,理想气体的Z1。(2) 如何求Z:Z不是特性参数,随气体状态而改变Z = f(T, p)代入对比参数Zc: Critical compression factor 若满足范氏方程,则即 Zc3/80.375实验表明:Ne Ar CH4 CF4 O2 N2 CO 0.31 0.29 0.29 0.28 0.29 0.29 0.30 Zcconst.于是处在相同对比状态的各种气体不仅有相近的物性,而且有相同的压缩因子。于是许多人测定Z,结果确是如此。将测量结果绘制成图压缩因子图Tr=1pr=1.5Z=0.25110101325 PaVm=0.258.314 J K-1mol-1304K解得: Vm=5.6710-5 m3 mol-1如何用图:例 CO2 (304K, 110101325 Pa),Vm=?本章本章小结:小结:气体计算方法理想气体状态方程实际气体状态方程压缩因子图大纲(二)大纲(二) 热力学第一定律热力学第一定律1、热力学基本概念2、热力学第一定律3、恒容热、恒压热、焓4、热容、恒容变温过程、恒压变温过程5、焦耳实验,理想气体的热力学能、焓6、气体可逆膨胀压缩过程7、相变化过程8、溶解焓及混合焓9、化学计量数、反应进度和标准摩尔反应焓10、由标准摩尔生成焓和标准摩尔燃烧焓计算标准摩尔反 应焓11、节流膨胀与焦耳汤姆逊效应12、稳流过程的热力学第一定律及其应用大纲大纲 (二二) 热力学第一定律热力学第一定律明确热力学的一些基本概念,如体系、环境、状态、功、热、变化过程等。掌握热力学第一定律和内能的概念。熟知功与热正负号和取号惯例。明确准静态过程与可逆过程的意义及特征。明确U及H都是状态函数,以及状态函数的特性。较熟练地应用热力学第一定律计算理想气体在等温、等压、绝热等过程中的U、H、Q和W。能熟练应用生成热、燃烧热计算反应热。会应用盖斯定律和基尔霍夫定律进行一系列计算。了解卡诺循环的意义。第二章第二章第二章第二章 热力学第一定律热力学第一定律热力学第一定律热力学第一定律 Chapter 2 The First Law of ThermodynamicsChapter 2 The First Law of Thermodynamics 热力学的任务:方向、限度、能量转换、宏观性质 热力学的特点:(1)研究对象:N 1020(2)宏观方法(3)无涉及时间因素 本章目的:(1)能量转换规律(2)物化学习方法21 基本概念 (Important concepts)一、系统和环境一、系统和环境 (System and surroundings) 定义:系统研究对象(也称体系)环境与系统有相互作用的外界 系统的分类开放系统 (敞开系统)封闭系统孤立系统系统二、热力学平衡状态二、热力学平衡状态 定义: 状态平衡状态:性质不随时间而变化热平衡(系统里各处温度一致)力学平衡(各处压力=环境压力)相平衡(相的组成等不随时间变化)化学平衡(系统的组成不随时间变化) 平衡状态包括的具体内容(Thermodynamic equilibrium state)平衡状态三、状态函数三、状态函数 (State function) 定义: 用于描述系统状态的宏观性质。 数学表述。 分类:容量性质容量性质:与n成正比,有加和性。例如m,C,V;是n的一次齐函数强度性质强度性质:与n无关,无加和性。例如T,p,Vm,;是n的零次齐函数 特点:(1)相互关联:单组分均相单组分均相封闭 系统有两个独立变量;(扩大:无组成变化(无组成变化(无相变无相变 无化学反应无化学反应 无混合无混合)的封闭系统)(2)变化只决定于初末状态 与路径无关四、过程与途径四、过程与途径 (Process and path) 按系统初末状态的差异,分为简单物理过程:p V T 变化复杂物理过程:相变、混合等化学过程:按过程本身的特点,分为多种多样。物化感兴趣的几种典型过程为:等温过程:T1T2T环const(常数)等压过程:p1p2p外const.等容过程:Vconst.绝热过程:系统和环境无热交换循环过程:变化为0等号全部成立才满足五、热量和功五、热量和功 (Heat and work)定义:热量是由于温度不同而在系统与环境之间传递的能量,Q; 功是除热以外,在系统与环境之间所传递的能量,W。 符号:系统吸热,Q 0;系统放热,Q 0;环境做功,W 0, T ,正效应若J-T 0, T ,负效应理想气体, 无效应 可测量:自学 应用:气体液化,致冷机为非理气物质求 提供了一种方法。27 第一定律对于化学反应的应用第一定律对于化学反应的应用热化学热化学(Thermochemistry) 热化学:反应热的测量与计算 反应热与反应进行的多少有关一、化学反应进度一、化学反应进度 (Extent of reaction) 任意反应写作B:参与反应的任意物质B:B的化学计量数,无量纲,与方程式写法有关例: 3H2 + N2 = 2NH3 (H2)= -36H2 + 2N2 = 4NH3 (H2)= -6 定义:(1) :反应进度,mol(2) 的意义: 若 1mol,则nB B mol 2mol,则nB 2B mol例: 3H2 + N2 = 2NH3(3) 值与B的选择无关而与方程式的写法有关注:通常所说的反应热均指 1mol时反应系统吸收或放出的热量二、反应热二、反应热 (Heat of reaction) 定义:在等温且无非体积功的条件下,反应系统吸收或放出的热量。 等容反应: 等压反应: 在计算rUm和rHm时,必须(1)写出反应方程式;(2)注明各物质的状态。(热化学方程式) 反应模型:反应进行到底,无混合三、反应热三、反应热( rHm)的计算的计算 (Calculating of heat of reaction)其中Hm,B不可知,所以只能用各物质摩尔焓的相对值进行计算。1. 由生成焓计算反应热:(1) 生成焓(Enthalpy of formation):在标标准准状状态态下,由稳稳定定单单质质生成1mol化合物B的反应称B的生成反应。生成反应的摩尔焓变叫B的标准摩尔生成焓(生成焓),fHm,B稳定单质(标准状态)1mol B(标准状态)fHm,B 标准状态:g (101325Pa下的纯理想气体)l (101325Pa下的纯液体)s (101325Pa下的纯固体)注:标准压力 p= 101325Pa fHm(298.15K)可查手册 fHm(稳定单质) = 0(2) 由fHm计算反应热:aR1 + bR2 + eP1 + fP2 + rHm = ?稳定单质(标准状态) 意义: rHm(298K)可由手册数据计算例: 2HCl (g) + 2Ag(s) 2AgCl(s) + H2(g)rHm(298K) = 2 fHm(AgCl, s) - 2 fHm(HCl, g)(2) 由cHm计算反应热2. 由燃烧焓计算反应热(1) 燃烧焓:在标准状态标准状态下,1mol有机物B完全燃烧完全燃烧时反应的摩尔焓变, cHm,B, cHm(298.15K)可查手册(Enthalpy of combustion)四、反应热的测量四、反应热的测量 (Measurement of heat of reaction)1. 量热技术及量热计2. 等压反应热与等容反应热的关系:条件:气体为理想气体 思考: 公式的推导过程为什么是错误的? P59例8中为什么一定要这样选择系统?五、反应热与温度的关系五、反应热与温度的关系 (Temperature-dependence of reaction heat)R(T1, p)P(T1, p)等T1, prHm(T1)R(T2, p)P(T2, p)等T2, prHm(T2)rHm(T1) rHm(T2) Kirchhoff公式 意义:rHm随温度的变化取决于产物与反物的热容差。 Kirchhoff equation的本质:R(T1, p)P(T1, p)rHm(T1)R(T2, p)P(T2, p)rHm(T2)? 注意:T1T2间任何物质不能发生相变(为什么?) 思考: 对等容反应,公式如写? 公式对相变热和溶解热适用吗?热力学第一定律热力学第一定律基本教学要求基本教学要求1. 基本概念:状态函数和过程量,等温过程,等压过程,绝热过程,可逆过程2. 基本内容:W、Q、U和H的计算,理想气体各种过程的计算 3. 基本方法:解题“三步曲” 求U和H经常使用设计途径的方法 (求W和Q不可使用设计途径的方法) 科学表述第三章第三章第三章第三章 热力学第二定律热力学第二定律热力学第二定律热力学第二定律Chapter 3 The Second Law of ThermodynamicsChapter 3 The Second Law of Thermodynamics 不违背第一定律的事情是否一定能成功呢?例1. H2(g) + 1/2O2(g) H2O(l)rHm(298K) = -286 kJ.mol-1加热,不能使之反向进行。例2. 25 C及p下,H+ + OH- H2O(l)极易进行,但最终H+OH- = 10-14 mol2.dm-6,即反应不进行到底。 第二定律的任务:方向,限度31 自发过程的共同特征一、自发过程的方向和限度一、自发过程的方向和限度自发过程(spontaneous process):在一定环境条件下,(环境)不作非体积功,系统中自动发生的过程。反之,只有(环境)作非体积功方能发生的过程为非自发过程。通常所说的“过程方向”即是指自发过程的方向。举例: 气流:高压 低压 传热:高温 低温 扩散:高浓度 低浓度 反应:HCl + NaOH NaCl + H2O 具有普遍意义的过程:热功转换的不等价性功热无代价,全部不可能无代价,全部 W Q 不等价,是长期实践的结果。 不是 Q W 不可能,而是热全部变功必须 付出代价(系统和环境),若不付代价只能部分变功二、自发过程的共同特征二、自发过程的共同特征 (General character of spontaneous process)(1) 自发过程单向地朝着平衡。(2) 自发过程都有作功本领。(3) 自发过程都是不可逆不可逆的。32 热力学第二定律The Second Law of Thermodynamics Kelvin 说法 (1851年): 第二类永动机不可能第二类永动机不可能热热源源第二类第二类永动机永动机QW高高温温热热源源热机热机Q2T2W低低温温热热源源T1Q1 不必进行数学证明: 用途:解决可能性(方向),如P72 例3133 Carnot 循环和 Carnot 定理 关于热机(循环)效率一、一、Carnot循环的效率循环的效率(Efficiency of Carnot Cycle)1. 任意热机(cycle)的效率:2. Carnot cycle的效率:pV Carnot cycle:理想气体 可逆循环的效率:二、二、Carnot 定理定理 定理: ir cycle= r cycle(1) 意义:的极限提高的根本途径(2) 正确的结论和错误的证明 Carnot定理的理论意义:34 熵 (Entropy)一、熵函数的发现一、熵函数的发现 (Discovery of entropy) ir= rClausius Inequality(1) 意义:在不可逆过程中系统的熵变大于过程的热温商,在可逆过程中系统的熵变等于过程的热温商。即系统中不可能发生熵变小于热温商的过程。 是一切非敞开系统的普遍规律。(2) T是环境温度:当使用其中的“”时,可认为T (3) 与“第二类永动机不可能”等价。是系统温度。(4) 用途:判断过程性质= ir= r意义:绝热系统的熵不可能减少(熵增加原理)并没有明确解决方向问题:ir不一定自发 对孤立系统: 自发= 可逆意义:孤立系统中进行的过程永远朝着S增加的方向,限度是Smax 熵判据 (entropy criterion)方向限度孤立系统的划定:作业作业:8,11,22,24; A. 4.3 4.4阅读阅读:A. 5.1-5.46. 证明证明据据循环关系循环关系设为设为理想气体理想气体: 则则设为设为Van der Waals气体气体: 则则证证:令令 p = f(T,V) 则则 在在p不变的条件下两端同除以不变的条件下两端同除以dV即即7. 已知已知 , , 的定义的定义(1) 证明证明 = p设为理想气体设为理想气体(or Van der Waals气体气体)则则用用循环关系循环关系# 关于关于Q吸吸、Q放放、W体体、W环环3.1 mol H2O(l)在在100C和外压为和外压为101325Pa时完全蒸时完全蒸 发成水蒸气发成水蒸气 (1) (2) (3)分别求W: 计算结果说明什么? (5) 此过程QW: 如何解释?24. 298.2K, 101325Pa下,某电池内发生化学反应的同时下,某电池内发生化学反应的同时 放热放热10J,做电功做电功20J,求此过程的求此过程的 H。H = U+(pV) = U = Q - W = -10J 20J = -30J解: 因为该过程等压,所以 H = Q-W = -10J 20J = -30JH = U+(pV) = U+p V =Q W+ p V = Q (p V + W )+ p V = Q - W = -10J 20J = -30J25. 373.2K, 101325Pa时水的 40.6 kJmol-1,水蒸汽的Cp,m=35 JK-1mol-1。若将1 mol 373.2K的 H2O(l)放入一个足够大的绝热真空容器中,水是否全部汽化?26. 有一绝热真空容器,在其上面穿一小孔,空气( 273.2K, 101325Pa)便由小孔慢慢流入容器中,直至容器内空气为 101325Pa,求容器内空气的温度。假设空气为双原子理想气体。自自 然然 界界 实实 际际 过过 程程 的的 方方 向向 能量的品位能量的品位(a quality of energy): mechanical and electricalthermal at high Tthermal at low Tupgradedegrade 结论:结论:In any real process, there is net degradation of energy. Kelvin 说法 (1851年): 第二类永动机不可能第二类永动机不可能热热源源第二类第二类永动机永动机QW高高温温热热源源热机热机Q2T2W低低温温热热源源T1Q1 热力学第二定律(热力学第二定律(The Second Law of Thermodynamics) 数学表达式:数学表达式: S+ S环环 0 自发自发= 可逆可逆方向方向限度限度36 熵变的计算 Calculation of entropy change 基本公式: 基本方法:若r,套公式;若ir,则设计可逆过程。一、简单物理过程的熵变一、简单物理过程的熵变(Entropy change in a simply physical process)1. 理想气体等温过程(等温膨胀或等温压缩)He (g)n, T, V1He (g)n, T, V2等T, r对理想气体等T,ir过程,亦可直接套用。则:2. 简单变温过程(等V变温或等p变温过程)意义:T S ,且每升温1K,S 增加 Cp/T 等压变温(1) 条件:等p简单变温(2) 若Cp可视为常数: 等容变温:(1) 条件:等V简单变温(2) 若CV可视为常数:例1.如图有一绝热容器,其中一块用销钉固定的绝热隔板将容器分为两部分,两边分别装有理想气体He和H2,状态如图。若将隔板换作一块铝板,则容器内的气体(系统)便发生状态变化。求此过程的(1)H;(2)S。1mol He(g)200K101.3kPa1mol H2(g)300K101.3kPa解:求末态 过程特点:孤立系统, U = 0T2 = 262.5K1mol He(g)200K101.3kPa1mol H2(g)300K101.3kPa(1) (2) 3. p V T同时变化的过程没有必要记公式,只掌握方法即可。(方法是什么?)例2. 系统及其初态同例1。若将隔板换作一个可导热的理想活塞,求S。1mol He(g)200K101.3kPa1mol H2(g)300K101.3kPaT2 = 262.5KQ = 0,W = 0, U = 0 与例1中的末态能量相同 T2必与例1相同(理气):解: 求末态 (与例1末态相同吗?) 200 K106.4 kPa等T, r等p, r 求熵变S = S(He) + S(H2)200 K101.3 kPa262.5 K106.4 kPaS(He) = ?irHe:同理:S(H2) = -4.29 J.K-1S = 5.25 - 4.29 = 0.96 J.K-1 0孤立系统熵增加,自发二、相变过程的熵变二、相变过程的熵变 (Entropy change in a phase-transition)1. 可逆相变 一般可逆相变为等T,等p,W0的可逆过程 Qr = H其中, H:可逆相变热T:可逆相变温度2. 不可逆相变方法:设计可逆过程例3. 试求298.2K及p下,1mol H2O(l)气化过程的S。已知:Cp,m(H2O, l) = 75 J.K-1.mol-1, Cp,m(H2O, g) = 33 J.K-1.mol-1 ,298.2K时水的蒸气压为3160Pa, glHm(H2O, 373.2K) = 40.60 kJ.mol-1。1mol H2O(l)298.2K,pS = ?等T, p, ir解:方法1 H2O(g)298.2K,p H2O(l)373.2K,p H2O(g)373.2K,p等T, p, r等 p, r等 p, r1mol H2O(l)298.2K,pS = ?等T, p, ir H2O(g)298.2K,p H2O(l)373.2K,p H2O(g)373.2K,p等 p, r等 p, r等T, p, r方法21mol H2O(l)298.2K,pS, H 等T, p, ir H2O(g)298.2K,p H2O(l)298.2K,3160Pa等T, r等 T, r等T, p, r H2O(g)298.2K,3160Pa(液体的S对p不敏感)(p对H的影响不大)(Kirchoffs Law)思考:S 0,该过程为自发过程。此推理正确吗?三、混合过程的熵变三、混合过程的熵变 (Entropy of mixing) 混合过程很多,但均不可逆。 不同理想气体的混合过程: 理想气体混合物的容量性质(V除外),均可按组分进行加和。理想气体混合物A(g)+B(g)+C(g)+所以需要设计可逆过程。 等T,p下不同理想气体的混合熵nAT,pnBT,pnCT,p抽去隔板等T,pnA+nB+nC+T,pnB:T,pT,pBSB条件:等T,p不同理想气体的混合过程四、环境熵变四、环境熵变 (Entropy change in surroundings)当环境系统时,对于环境而言实实际际热热即即等等于可逆热于可逆热。计算S环应以环境吸热为正。例4. 试证明298.2K及p下,水的气化过程不可能发生。已知:Cp,m(H2O, l) = 75 J.K-1.mol-1, Cp,m(H2O, g) = 33 J.K-1.mol-1 ,298.2K时水的蒸气压为3160Pa, glHm(H2O, 373.2K) = 40.60 kJ.mol-1。证明:1mol H2O(l)298.2K,p等T, p H2O(g)298.2K,p(例3已求) S孤 = 118-146.7 = -28.7 J.K-1 自发= rClausius Inequality 展望未来展望未来封闭系统中等温等容等温等容条件下自发过程的方向和限度;封闭系统中等温等压等温等压条件下自发过程的方向和限度。38 Helmholtz函数判据和Gibbs函数判据 Helmholtz function criterion and Gibbs function criterion一、一、 Helmholtz函数判据函数判据1. Helmholtz函数对于封闭系统中的任意过程: ir= r若等T,Definition:Helmholtz functionA:状态函数,容量性质,J or kJ ir= r(1) 条件:等T(2) 公式的意义:12等T,r等T,ir (3) A的意义: (A也称work function)2. Helmholtz函数减少原理若等V,W = 0,则前式为 自发= r(1) 条件:等T,V,W= 0(2) 意义:A减少原理 (Helmholtz函数判据) ir= r二、二、Gibbs函数判据函数判据1. Gibbs函数等T: ir= r等p:Definition:Gibbs functionG:状态函数,容量性质,J or kJ ir= r(1) 条件:等T,p(2) 公式的意义:(3) G的意义: (- G称为化学能)2. Gibbs函数减少原理若W = 0: 自发= r(1) 条件:等T,p,W = 0(2) 意义:G减少原理(Gibbs函数判据) 0,该过程不可能发生。对吗?二、相变过程二、相变过程1. 可逆相变:一般可逆相变等T,等p,W = 0 G 0A -W = -pV2. 不可逆相变:若无公式,应该设计过程例2. 试求298.2K及p下,1mol H2O(l)气化过程的G。已知:Cp,m(H2O, l) = 75 J.K-1.mol-1, Cp,m(H2O, g) = 33 J.K-1.mol-1 ,298.2K时水的蒸气压为3160Pa, glHm(H2O, 373.2K) = 40.60 kJ.mol-1。解法1:1 mol H2O (l,298.2 K, p)等T, p, irH2O (g,298.2 K, p)H = 43.75 kJ (于S计算例3中求得)S = 118 J.K-1 (于S计算中求得)= 43.75 298.2118.810-3= 8.6 kJ解法2:1mol H2O(l)298.2K,pG 0 等T, p, ir H2O(g)298.2K,p H2O(l)298.2K,3160Pa H2O(g)298.2K,3160PaG = 0 书 P107 例3-15解法3:三、混合过程三、混合过程 (Gibbs function of mixing)对不同理想气体的等T,p混合过程:( 等T)(1) 条件:不同理想气体的等T,p混合;分别求GB,然后四、化学反应四、化学反应(2) 对理想气体的其他混合过程:五、五、 G与与T的关系的关系 (Temperature dependence of G)R (T1, p)R (T2, p)P (T1, p)P (T2, p)等T1, pG1等T2, pG2G1 G2 若G1已知,如何求G2?对任意处于平衡状态的物质:即:Gibbs-Helmholtz Equation可以证明,对任意等T,p过程:G-H Equation即:第四章第四章第四章第四章 统计热力学及熵的统计意义统计热力学及熵的统计意义统计热力学及熵的统计意义统计热力学及熵的统计意义Chapter 4 Statistical Thermodynamics Chapter 4 Statistical Thermodynamics and Statistical Meaning of Entropyand Statistical Meaning of Entropy41 概论 (Introduction)一、什么是统计热力学一、什么是统计热力学 统计物理统计力学统计热力学用微观方法研究宏观性质 统计力学是界于微观和宏观的桥梁。统计热力学是更高层次的热力学。 研究方法:统计平均 本章:初步知识及其对理想气体的简单应用。讲授及学习方法:二、统计系统的分类二、统计系统的分类 按粒子间作用力划分独立子系:相依子系: 按粒子的可分辨性定域子系:粒子可别离域子系:粒子不可别理想气体:独立子系,离域子系三、数学知识三、数学知识1. 排列与组合 (1) N个不同的物体,全排列数:N! (2) N个不同的物体,从中取r个进行排列:s个彼此相同t个彼此相同其余的各不相同(3) N个物体,其中则全排列数:(4) 将N个相同的物体放入M个不同容器中(每个容器的容量不限) ,则放置方式数1234M (M-1)块隔板 N个物体可视为,共有(M-1+N)个物体全排列,其中(M-1)个相同,N个相同,则:(5) 将N个不同的物体放入M个不同容器中(每个容器的容量不限) ,则:第一个物体有M种放法第二个物体有M种放法第N个物体有M种放法(6) 将N个不同的物体分成k份,要保证:第一份:n1个第二份:n2个第 k 份:nk个则组合数:2. Stirling公式:若N值很大,则42 分子的运动形式和能级公式Motion forms and energy level formulas of molecules一、分子的运动形式一、分子的运动形式平动转动振动电子运动核运动内部运动外部运动对独立子系:t 等均是量子化的 (quantization)二、平动二、平动 (Translational motion)1. 一维平动子:0a其中,m:分子质量,kgh:Planck const. h =6.62610-34 J.snx:平动量子数 (quantum number)nx = 1, 2,3, 当nx = 1时(ground state) ,t,minzero point energyx2. 三维平动子:abcabc V若 a = b = c,则 a2 = V2/3nx, ny, nzn:平动量子数,取1,2,3 (1) t 是量子化的。 (2) 简并度(generacy):令3A6A9A11A12Atg = 1g = 3g = 3g = 3g = 1(非简并)(3) 能级间隔 (Separation between neighbouring quantum levels)一般Boltzmann const.(4) t与V有关。三、转动三、转动 (Rotational motion of diatomic molecule)若视为刚性转子,则I:Rotational moment of inertia, kg.m2(称约化质量)j:转动量子数,取0,1,2,3,(1) gr = 2j + 1(2) r 10-2 kT (即10-23 J)四、振动四、振动 (Vibrational motion of diatomic molecule)视为简谐振动,则:Vibrational frequencyv:振动量子数,取0,1,2,3,(1) gv = 1(2) v 10 kT五、电子运动和核运动五、电子运动和核运动 (Electronic motion and nucleal motion) 没有统一公式 e 102 kT n 更大小结:小结: 1. t 、 r 、 v 、 e 和 n 均是量子化的,所以分子的总能量i 必量子化。(1) 分子总是处在一定的能级上。除基态外各能级的g值很大。(2) 宏观静止的系统,微观瞬息万变:分子不停地在能级间跃迁,在同一能级中改变状态。2. 关于能级间隔及数学处理:t r v e ni (如室温时 )(1) 适用于离域子系,(2) :对分布加和 :对能级连乘(3)gi ni(4) 与定域子系公式的区别是什么?四、统计力学的两个基本假定四、统计力学的两个基本假定 求所遇到的问题:(1) s =?(2) 各种分布对的贡献如何?1. 等几率假定: 1/2. Boltzmann假定:最可几分布(Boltzmann分布)代表平衡状态。tmax对 做有效贡献44 熵的统计意义The statistical meaning of entropyBoltzmann公式 (1) S的物理意义: S是 的量度。(2) Boltzmann公式是统计热力学的基础。(3) 从微观角度理解几个过程的熵变: 分解反应: N S V:k(平动), S 在一定T,p下:Sm(g) Sm(l) Sm(s) 等T,p下不同理想气体混合过程: 每种气体均 VB SB T:能级数k, S一、一、 Boltzmann分布定律分布定律45 Boltzmann分布定律The Law of Boltzmann Distribution(对定域子系)(对离域子系) 如何求ni*(最可几分布)?对定域子系:(1)(2)(3)条件ni = ? t值最大从(1)式得: tmax (lnt)max(4) (4) 求极值(5)(6)条件Lagrange未定乘数法:则解得:(令 1)求和:(1)(2)The Law of Boltzmann Distribution (1) 可以证明:也适用于离域子系。 (2) 用于求独立子系的最可几分布。二、分子配分函数二、分子配分函数 (The molecular partition function)1. 定义:2. 物理意义:有效量子态之和3. q是无量纲的微观量,可由分子性质算出。对U V N确定的系统有定值,通常记作:q q(T, V, N)4. Boltzmann分布定律的意义:5. q的重要作用:宏观性质Stmaxq分子性质即:宏观性质q分子性质46 热力学状态函数的配分函数表达式Expression of thermodynamic state functions in term of the partition function一、定域子系的状态函数一、定域子系的状态函数1. 内能:(1)令q q(T, V, N)则:(gi和i与T无关)代入(1):2. 熵:3. Helmholtz函数:4. 压力:5. 焓:6. Gibbs函数:二、离域子系的状态函数:二、离域子系的状态函数:与定域子系公式比较:(1) U、H、p相同(2) S、A、G多了常数项47 配分函数的计算Evaluation of the partition function一、配分函数的析因子性质一、配分函数的析因子性质 (Separation of partition function)对能级i:析因子例:二、平动配分函数二、平动配分函数 (Translational partition function)1. 一维平动子:(一个能级上只有一个量子态)(近似连续,设 )(函数性质: )即:2. 三维平动子: 可以证明:三、转动配分函数三、转动配分函数 (Rotational partition function)for diatomic moleculeRotational charac-teristic temperature令j(j+1) =x,则dx = (2j+1)dj即:(异核双原子分子)(同核双原子分子):对称数 (Symmetry number)意义:分子转动一周后,不可分辨的几何位置数。异同 1 2四、四、振动配分函数振动配分函数 (Vibrational partition function)for diatomic moleculeVibrational charac-teristic temperature令r/Te- 1,当 x q(2) 适用于任何运动即:统计中多用(3) 对振动3. 零点能的选择对状态函数的影响零点能的选择对状态函数的影响(离域子系离域子系):(1)其中:其中:U0 = N 0,意义意义(2)六、电子运动配分函数六、电子运动配分函数 (Electronic partition function)(一般温度时,激发态可忽略)通常 g0e =1 (除O2,NO等少数分子外)七、核配分函数七、核配分函数 (Nucleal partition function)(始终处于基态)本章小结:(1) 对He,Ar等单原子理想气体(2) 对H2等双原子理想气体48 统计热力学对于理想气体的应用The application of statistical thermodynamics to ideal gases 应用广泛:状态方程,性质,反应一、理想气体的内能一、理想气体的内能 第一定律:实验结果 (Joule定律)第二定律:用Gibbs公式和Maxwell关系式证明统计热力学:从微观说明1. 单原子理想气体:平动贡献电子运动和核运动贡献,与T无关只是T的函数2. 双原子理想气体:来自平、转动来自振动平: 3/2RT振动贡献只是T的函数结论: (1) 各种运动均对U有贡献 (2) UU(T) (3) U与分子本性有关:如转:RT二、理想气体的热容二、理想气体的热容CV = f(T) 一般温度(当温度不很高)时:He等,H2等,为什么?1. 单原子理想气体:(1) 任何温度下均为3/2R, 与T无关(2) 只有平动对热容有贡献2. 双原子理想气体:平、转动贡献振动贡献(令 )(1) 低T时(包括室温):T v, u0在高温下,平动、转动和振动均对热容有贡献H2HeT三、理想气体的熵三、理想气体的熵量热熵和统计熵 (Calorimetric entropy and statistical entropy)量热熵:S(0K) S(任意状态)统计熵:实验计算平动熵 St转动熵 Sr振动熵 Sv电子熵 Se核 熵 Sn Scal = S S(0K),而此二态时电子运动和核运动状态相同,所以对Scal无贡献。 Ssta中只需计算 St、Sr和Sv1. 平动熵(1) S N(2) T S(3) V S(4) m S2. 转动熵3. 振动熵例: 1mol He(T1, V1) He(T2, V2)S = ?热力学解法: 1mol He(T1, V1) He(T2, V2)S = ?He(T2, V1)等V,r等T,r统计热力学统计热力学基本教学要求基本教学要求1. 概念:配分函数,Boltzmann分布定律2. 简单计算:q 宏观性质分子性质 q统计熵3. 简单证明4. 统计力学处理问题的基本方法:第五章第五章第五章第五章 溶液热力学溶液热力学溶液热力学溶液热力学 Chapter 5 Solution ThermodynamicsChapter 5 Solution Thermodynamics 热力学理论对多组分系统的应用 本章的教学难点51 溶液的特点及其组成表示方法一、溶液的特点一、溶液的特点定义:多种物质,其中每一种物质都以分子、原子或离子的形式分散到其他物质当中。特点:多组分均相,组成可在一定范围内变化。 分类:气态溶液 (气体混合物)液态溶液 固态溶液 (固溶体) 溶剂(A)和溶质(B):l1 + l2 sln(液体混合物)s + l slng + l slng和s为B,l为A其中量多者为A,少者为B二、溶液组成的习惯表示方法二、溶液组成的习惯表示方法 组成是溶液的强度性质: T,p,组成1. 物质的量分数 (Substance amount fraction, mole fraction)2. 质量摩尔浓度 (Molality)mol.kg-13. 物质的量浓度 (浓度) Substance amount concentrationmol.m-34. 质量分数 (mass fraction)注:注:(1) 各种浓度的换算:选合适量的溶液例:某H2SO4(B)溶液 wB = 5%,则mol.kg-1(2) 在很稀的浓度范围内,以上各量成正比。52 偏摩尔量 (Partial molar quantities)一、质点数目可变系统的状态描述一、质点数目可变系统的状态描述 质点数目可变系统:敞开系统1. 组成可变的封闭系统相当于敞开系统:组成不变:双变量系统 Z = f(T, p)组成可变:反应、相变等封闭系统(质量守恒)敞开系统 (质量不守恒)质点数目可变2. 溶液的状态描述: 容量性质:共k2个变量二元溶液 强度性质:共k1个变量二元溶液二、偏摩尔量二、偏摩尔量 定义:B的偏摩尔体积(1) 物理意义:(2) 注意:下标是 T,p,nC,均相(3) VB是状态函数,强度性质:容量性质才有相应的偏摩尔量(4) 一般情况下,对纯物质当xB很大时,xBVB Vm,B 在稀溶液中 其他常用的偏摩尔量及它们之间的关系:UB, HB, SB, AB, GB,三、集合公式三、集合公式 (Additive formula)(1) 意义:(2) 二元溶液,(3) 其他偏摩尔量的集合公式:自己写出四、四、GibbsDuhem公式公式(1)(2)比较(1)和(2):GibbsDuhem公式在等T,p条件下:(1) 对二元溶液(2) 意义:在等T,p条件下组成变化时遵守的关系(3) 溶液中各组分的偏摩尔量具有相关性(4) GD公式的其他形式其他偏摩尔量的GD公式自学,自写五、偏摩尔量的测量:自学五、偏摩尔量的测量:自学53 化学势 (Chemical potential)一、化学势定义一、化学势定义 意义: 强度性质: 集合公式: GD公式:二、敞开系统的基本关系式和化学势的其他形式二、敞开系统的基本关系式和化学势的其他形式dG = -SdT + Vdp等基本关系式只适用于组成不变的封闭系统中W = 0的过程。对组成可变的封闭系统(即敞开系统)中W = 0的过程,基本关系式如何表示?对多组分均相系统:(1)即令敞开系统的全微分式;W = 0(2)令(3)令(4)令 的关系:与(1)式比较得同理可得化学势定义 敞开系统的基本关系式条件:没有非体积功的任意过程三、化学势决定传质过程的方向和限度三、化学势决定传质过程的方向和限度 传质过程 (mass transfer process):物质流动,扩散(混合),相变,化学反应 以相变为例:系统:相相B相变:等T,p,W = 0,微量 B dG ?则即 自发= 平衡结论:在等T,p,W = 0的条件下,物质由化学势高的相流向化学势低的相。相平衡时化学势相等。相相B 以化学反应为例在等T,p,W = 0的条件下,系统内发生微量反应d,则即= A(s)熔化 (Tf Tf*) 定量处理:若在凝固点时,固相为纯A(s),则A(sln, T, p, xA) A(s, T, p)T 即Tf若sln是理想溶液或理想稀薄溶液,则A(sln, T, p, xA) A(s, T, p)在一定压力下 (通常p101325Pa)(等T, p, W=0)1mol A(sln, T, p, xA) A(s, T, p)1mol A(l, T, p)若 条件:理想或理想稀薄溶液,冰点时析出 纯固态溶剂, 用途:xA Tf 若 xB 1 (理想稀薄溶液)( xB 1 )( xB 1 ) freezing point depression const.溶剂性质,可查手册如:水 Kf = 1.86 K.kg.mol-1苯 Kf = 5.10 K.kg.mol-1 条件:稀薄溶液3. 沸点升高: 对非挥发性溶质的溶液:pApApA*TTb*Tb定义101325Pa 沸点时:A(sln) A(g, 101325Pa)条件:非挥发性溶质的理想溶液或理想 用途:xA Tb稀薄溶液, 当溶液很稀时其中 boiling point elevation const.溶剂性质,可查手册如:水 Kb = 0.52 K.kg.mol-1苯 Kb = 2.60 K.kg.mol-14. 渗透压 (Osmotic pressure): 渗透现象和渗透平衡:p渗透现象:热力学原因:pslnA+BA(l)+A的半透膜渗透平衡:A(sln, T, p+, xA) A(l, T, p) :Osmotic pressure此时由所引起的溶液中A升高恰好补偿了由于浓度降低所引起的A降低。 定量处理:对理想溶液或理想稀薄溶液,则条件:理想溶液或理想稀薄溶液 用途:xA 若 xB 1 (理想稀薄溶液)(xB 1)(xB 1)(xB 1:正偏差,且 B 正偏差 B1:负偏差,且 B 负偏差 B=1:B服从Raoult定律是B不理想程度的标志设法求B是溶液化学的重要任务之一(3) 对理想溶液:对非理想溶液: 1oror参考态 reference state3. 对实际溶液的其他修正方法:上述思考方法具有普遍意义:以理想溶液为基础修正实际溶液上述方法的缺点:任何一个溶液(不论浓度如何),至少应求一个活度系数解决办法:以理想稀薄溶液为基础修正实际溶液即 A参考Raoult定律B参考Henry定律 对稀薄溶液:不必求 (A = 1, B = 1)ABxB pBpB*pA*pARRHHkx,Akx,B 在中间浓度范围内:A:,校正浓度; A代表A对Raoult定律的偏差B:校正浓度B代表B对Henry定律 的偏差校正浓度B代表B对Henry定律 的 偏差校正浓度B代表B对Henry定律 的偏差二、非理想溶液的化学势二、非理想溶液的化学势1. 溶剂:以Raoult定律为基础,参考态:标准状态: 纯A(l, T, p),2. 溶质:以Henry定律为基础,参考态:标准状态: T, p, xB=1的假想液体;(1)参考态:标准状态: T, p, b=1 mol.kg-1的假想溶液;(2)参考态:标准状态: T, p, cB=1000 mol.m-3的假想溶液;(3)三、关于化学势、标准状态和活度的总结三、关于化学势、标准状态和活度的总结1. 关于化学势:若以R定律为基础:若以H定律为基础:气体( ): 对任意物质B:其中:对气体:FB0对非气体:FB f(T, p),通常FB值很小2. 溶液标准状态的四种习惯选择方法T, p下纯液体标准状态T, p下 xB=1仍服从H定律T, p下 bB=b仍服从H定律T, p下 cB=c仍服从H定律规定规定规定规定处理基础备注 标准状态可任意选择 实际上是人为处理问题的四种不同方法3. 对确定状态的溶液:A和B及pA和pB均唯一确定;而aA、aB、A和B与标准状态的选择有关4. aA、aB、A和B均无量纲,当标准状态选定之后,它们取决于T,p及各物质的浓度5. 特定状态下的活度和活度系数:(1) 标准状态:(2) 在理想溶液中:(3) 在理想稀薄溶液中:标准状态?四、非理想溶液的性质:自学四、非理想溶液的性质:自学要求:与理想溶液的区别例:“依数性”,以aA替换xA五、活度五、活度(活度系数活度系数)的测定与计算的测定与计算 主要靠实验测定1. 蒸气压法:由(k为Henry const.) pA、pA*、pB和k均由蒸气压测定而得 此法只适用于求溶剂和挥发性溶质的活度2. 依数性法:对理想溶液对非理想溶液 此法只适用于测定溶剂活度3. Gibbs-Duhem公式法 若溶质不挥发,以上两法不可用。可由aA计算aB在等T,p下, Gibbs-Duhem公式 此式对A、B的标准状态无限制 若A按规定而B按规定选标准状态,则 欲用此式由A求B,应先解微分方程六、超额热力学函数六、超额热力学函数 (Excess functions) 整个溶液的不理想程度如何表示? 定义摩尔超额体积摩尔超额焓摩尔超额熵摩尔超额Gibbs函数 超额函数与A和B有关:例如:58 分配定律 (Distribution Law)自学要求:(1)分配定律(2)分配系数(3)用途:萃取 (extract)作业:作业:1,2,3; A. 8.26阅读:阅读:A. 8.3 8.5 7.1 7.3 10.1第六章第六章 相平衡相平衡Chapter 6 Phase Equilibrium热力学原理对相平衡系统的应用热力学原理对相平衡系统的应用本章任务本章任务 (1) 相平衡系统的普遍规律 (2) 各种系统的具体相平衡情况重点:二组分系统的相平衡情况重点:二组分系统的相平衡情况61 相平衡的条件 (Condition of phase equilibrium)一、一、 相的概念相的概念 (Concept about phase)相相:在系统中,物理性质和化学性质完全均匀的部分。 相间有界面 越过相界面有些性质发生突变相相数数: 如何确定相数相相态态:当系统的和各相的形态不变时,称系统处于确定的相态。二、二、 相平衡的条件相平衡的条件(Condition of phase equilibrium) 任意物质B在它所存在的所有相中的化学势相等:B(1) =B(2) =B() 例如:水(A)+乙醇(B)+蔗糖(C) 系统 g-l 平衡gA+BslnA+B+CA(sln) =A(g)B(sln) =B(g) 相平衡系统:满足相平衡条件的系统。62 相律 (Phase Rule)一、一、 物种数和组分数物种数和组分数 (The number of substance and the number of component) 物种数物种数:S,系统中所含物质的种类数。 组分数组分数:定义为K S R R 化学反应数:化学反应数:R,各物种之间实际存在的独立的 化学反应 浓度限制条件浓度限制条件:R,在同一相中,除BxB=1外,其他固定不变的浓度关系例如:金属Zn的冶炼ZnS(矿石) ZnO(s) Zn灼烧用C还原1200Zn(g)+CO(g)+CO2(g)ZnO(s)C(s)=3 S=5反应 ZnO+C CO+Zn 反应 2ZnO+C CO2+2Zn反应 CO2+C 2CO = 2 R = 2 气相中CO和CO2中的O均来源于ZnO n(Zn,g) = n(CO,g) + 2n(CO2, g)即 x(Zn) = x(CO) + 2x(CO2) R = 1因此 K 521 2,即二组分系统 为什么要引入组分数的概念 例如:水 S=1,则R=0,R=0 K=1 S=3,则R=1,R=1 K=1 所以K比S更具科学性,便于交流。单组分系统二、二、 自由度和自由度数自由度和自由度数 (Degree of freedom and the number of freedom degree) 描述相平衡的性质都是强度变量 例如 Tb,Tf,溶解度等自由度自由度:在保证系统相态不变(即不生成新相也不 消失旧相)的条件下,系统的独立变量。自由度数 f三、三、 相律(相律(Phase Rule)对任意相平衡系统:含S个物种,个相,则描述系统的总变量有 T , px1(1), x2(1), x3(1), , xS(1)x1(2), x2(2), x3(2), , xS(2) x1(), x2(), x3(), , xS()S个2个共(S+2)个(1) 每个相均满足归一化条件BxB=1,所以有一个不独立浓度。共扣除个不独立浓度。(2) 对任一物质B, B(1) =B(2) =B() ,有( 1)个关于B的等式,即( 1)个关于T、p、浓度的方程,所以有( 1)个不独立变量。共扣除S( 1)个不独立变量。(3) 有R个化学反应:一个反应,即有 ,所以共有R个关于化学势的方程。共扣除R个不独立变量。(4) 有R个浓度限制条件:共扣除R个不独立浓度。将其中不独立的分别扣除意义:对于指定的系统,描述f关系 f , f f 0时,则 max 1时,则 f max关于“2”:要根据具体情况进行修正条件自由度:即fK 2Gibbs Phase Rule f(S+2) S(1) RR (S RR )2 条件:相平衡系统 例如炼Zn系统,f2321,单变量 f2222 在在25的条件下的条件下,则 f2211p=pA+pBslnA+B例:AB溶液与其蒸气平衡共存 解释现象: 例例1. 单组分匀相封闭系统用两个变量描述。 f1122 例例2. 纯液体的沸点Tb*有定值,而溶液的Tb无定值。 纯A:f1210,T不可变 AB溶液:f2211,T可变 制定科研方案 用途:对相律应用的认识过程作业:作业:5,6,8,9阅读:阅读:A. 7.1 7.2 7.3 7.4 10.1 10.263 纯物质的两相平衡(2-phase equilibrium for pure substance)一、一、 Clapeyron方程方程 (Clapeyrons Equation)相律分析相律分析:在T,p下纯物质呈两相平衡,则f1221, T,p中只有一个独立变量,即pf (T),具体函数关系是什么? 对于纯物质B的任意两相平衡B(相,T,p)B(相,T,p) B(,T,p)B( ,T,p)B() = B()dB() = dB()-Sm()dT+Vm()dp = -Sm()dT+Vm()dp Vm()-Vm()dp = Sm()-Sm()dTVmdp = SmdT等T,p,可逆相变,SmHm/TdpdTHmTVm=Clapeyrons Equation方程适用于纯物质的任意两相平衡1、g-l平衡平衡 上式意义:蒸气压与T的关系dpdTglHmTglVm=glVmVm(g) RTp(近似)Clausius - Clapeyron Equation (克克方程)(1) 条件:纯物质g-l平衡(近似:忽略Vm (l),理气)(2) 若近似glHm不随T变化,则测气化热的依据若取两个温度,则2、s-g平衡平衡描述固体蒸气压与温度的关系克克方程3、s-l平衡平衡描述 Tf*p关系例如:水 p Tf* 二、压力对蒸气压的影响二、压力对蒸气压的影响 (Effect of pressure on vapour pressure) 纯液体 pV= f(T,p) 其中T的影响服从克克方程,p的影响如何? p pV 定性分析:ggT, pV,2, p惰T, pV,1lT, p1=pV,1lT, p2= pV,2+p惰l (T, p1)l (T, p2)例如H2O(l,100,p )加入惰性气体H2O(l,100,10p )实验测定:实验结果与上述分析情况相同plg, pV半透膜定量处理等T下: p pV 值很小,表明pV对p不敏感64 纯物质的相图(Phase diagram for pure substance)相图引言相图引言:相平衡主要靠实验测定,将实验结果用图 的形式表示出来。纯物质的相律分析纯物质的相律分析:f 12 3 max = 3 = 1 f=2 在pT图上是一块面积 = 2 f=1 在pT图上是一条曲线 = 3 f=0 在pT图上是一个点水的水的相图相图 (The phase diagram for water)CBOADpTH2O (g)H2O (l)H2O (s)三条线:OA, OB, OC 三个区: 三相点(triple point): 0.0099, 610.6 Pa 与冰点不同(自学) 用途:指明条件,可查得系统的相态; 当条件变化时,预测系统的相变情况。 几点说明: OA:不能无限延长,A(Tc, pc) OB:不能无限延长,2000 以上已发现7种不同的冰 OD:过冷l-g平衡,至今已测至 -43pp两点说明两点说明1.几种相态: 超临界流体 supercritical fluid介晶态 mesomorphic state液晶玻璃高分子材料2.高级相变: 例如 铁升温, 在769时由铁磁体转变成顺磁体 汞降温, Hg(4.2K) Hg(4.2K, superconductivity) 氦降温, He(l, 2K) He(l, 2K, superfluid)65 二组分理想溶液的g-l平衡相图(Diagram of g-l equilibrium for a binary ideal solution)相律分析相律分析:f 22 4 = 1 fmax=3 f = 0 max=4所以,要画三维空间图形为方便,用条件自由度(固定一个条件) f 3T 固定 p-x 图p 固定 T-x 图x 固定 p-T 图二维图形,其中T-x 图用得最多, p-T 图用得最少。一、一、 p-x 图(蒸气压组成图)图(蒸气压组成图) 在一定温度下,测量不同组成的溶液的蒸气压及平衡气相的组成(也可由Raoult定律计算)液相线液相线:直线,pxB(sln)气相线气相线:曲线,p-yB(g)相区相区:物系点和相点物系点和相点:定义;在单相区,物系点与相点重合;在两相区,物系点与两个相点在同一条水平线上。BApT=const.lgl+gpA*液相线气相线xBpB*(Vapour pressure-composition diagram)二、二、 T-x 图(沸点组成图)图(沸点组成图) (Boiling point-composition diagram)BATp=const.g (f=2)l+g液相线气相线xBl (f=2) (f=1)T-x 图的由来图的由来: 由p-x 图转换 直接测 xB,Tb,yB相区相区:如图应用:应用: 泡点线 露点线作业:作业:10,23,24; A 7.18 (A 7.19)阅读:阅读:A. 8.4 10.3三、杠杆规则三、杠杆规则 (Lever principle)某物系O,g-l平衡n(g)n(l)baTABxB (wB ) aboyBxBXBLever principle 实质实质:质量守恒。所以适用于任意两相区。严格说,适用于任意满足质量守恒的场合。 当组成为wB时,写作 意义:意义:若以ob代表n(l),则oa代表n(g)四、四、 分馏原理分馏原理 (Principle of fractional distillation)简单的分馏原理 (Simple distillation)l-g相图的应用蒸馏XB冷却水剩余物镏出物x2TABxB oy2x2XBy1缺点:分离不彻底精馏分离 (Rectification or rectifying)原理:将气相和液相分别进行反复多次部分液化和反复多次部分汽化TABxB oXBT2T1T3T4T5y2y1y3x3x4x5冷凝塔釜(加热)塔顶A+B(进料)B(l)A(l)液汽 精馏塔:精馏塔:66 二组分非理想溶液的g-l相图(Diagram of g-l equilibrium for 2-component non-ideal solution)一、一、 若非理想溶液对理想溶液的偏差不大若非理想溶液对理想溶液的偏差不大(p在在pA*pB*之间之间)Little deviation from ideal solution相图形状与理想溶液的g-l相图相似二、二、 若偏差很大若偏差很大(以致以致p不在不在pA*pB*之间之间)1、正偏差很大pABxB 液相线气相线理想溶液AB液相线气相线Tgg+lg+llOxB O点:最低恒沸点恒沸物特点:沸腾时 yB=xB是混合物:组成随压力而改变 不可用精馏方法分离:例水乙醇,常压下恒沸物wB=95.57%。若将50的sln精馏,则塔釜得水,塔顶得恒沸物。2、负偏差很大: 相图中存在最高恒沸点TABxB gg+lg+ll67 部分互溶双液系的l-l相图(Diagram of l-l equilibrium for partially soluble 2-liquid system)在常温常压下两种液体常部分互溶,例如水(A)异丁醇(B)。实验:在20及 下,往水中逐渐加醇。p8.5%8.5%8.5%8.5%83.6%83.6%83.6%08.5%0wB8.5%醇的水溶液8.5wB83.6%共轭溶液 conjugate solution83.6%wB100%水的醇溶液20 100 120 0wB9.3%0wB14%9.3wB70.2%14wB61.5%70.2%wB100%61.5%wB100%根据以上实验数据作图TABwB l*100 20 120 132.8 p= p其他情况其他情况: 132.8:最高临界溶解温度相图特点相图特点:形状用途用途:相变预测 高温区域的相平衡情况如何?l1+l2753768 完全不互溶的双液系统(Unsoluble 2-liquid system)自学要求:自学要求:1、这类系统的特点(1) 沸点:与组成无关,且比 和 都低(2) 在一定温度下气相组成不变:2、 工业应用:作业:作业:11,12,14,15,28阅读:阅读:A. 10.3 10.469 二组分系统的s-l平衡相图(Phase diagram of s-l equilibrium for 2-component system)一、一、 具有简单低共熔混合物的相图具有简单低共熔混合物的相图 (Phase diagram for a system with simple eutectic mixture)液体降低到一定温度,将有固体析出。以下只讨论液相完全互溶的情况,共包括四种典型相图这类系统的特点:液相完全互溶,而固相完全不互溶。 相图绘制方法: 热分析方法(用于金相系统) 溶解度方法:用于常温下s-l共存的系统。 如 H2O-(NH4)2SO4。(自学) Bi323140273T /Cd20%40%70%w (Cd) ll+Bi(s)l+Cd(s)Bi(s)+Cd(s)Bi(s)+l(E)+Cd(s)E相区相区:一个单相区:l 三个两相区:l+Bi(s), l+Cd(s), Bi(s)+Cd(s) 一个三相区(线):Bi(s)+l(E)+Cd(s)热分析方法:Bi-Cd系统,5个样品,实验结果如下:CdTtBi 20%Cd 40%70%步冷曲线E点点:低共熔点(低共熔混合物) 凝固点最低;两种金属同时按比例析出 用途:分析相变二、二、 具有稳定化合物的相图具有稳定化合物的相图 (Phase diagram for a system with stable compound)有些二组分系统,A(s)与B(s)虽不互溶但能形成一种或多种化合物。例如 CuCl(A) FeCl3(B):AB H2O(A) H2SO4(B):AB,A2B,A4B 若化合物升温至熔化前,一直不分解,称稳定化合物TABAB(C)xB E1E2l+A(s)l+C(s)l+C(s)l+B(s)A(s) +C(s)A(s)+l(E1)+C(s)B(s)+l(E2)+C(s)B(s) +C(s)相图:相图:以只形成一种稳定化合物AB为例相区相区:如图,可视为A-C和B-C两张具有简单低共熔混合物相图的组合。相合相合熔点熔点:应用应用:分析相变,C(s)的制备l三、具有不稳定化合物的相图三、具有不稳定化合物的相图 (Phase diagram for a system with unsteady compound)A与B形成的化合物,当升温时在熔化之前便分解成一种熔液和一种固体。这种化合物称不稳定化合物。 例如:CaF2CaCl2系统,形成等分子化合物CaF2CaCl2(s), 化合物当升温至737时便分解成CaF2(s)和x(CaCl2) =0.6的熔液: nCaF2CaCl2(s)737m CaF2(s)+sln(x(CaCl2)=0.6)此反应称转熔反应, 737称转熔温度或化合物的不相合熔点。相图:相图:以CaF2CaCl2为例 TCaF2CaCl2Cx(CaCl2) El+ CaF2(s)l+C(s)l+CaCl2(s)CaF2(s) +C(s)CaF2(s)+C(s)+l(0.6)C(s)+l(E)+CaCl2(s)CaCl2(s) +C(s)0.6737l相区相区:如图。应用应用:分析相变,包晶现象,C的制备。结论结论:若有固相存在,应用相图解决实际问题时应注意许多具体问题。四、四、 形成固溶体的相图形成固溶体的相图 (Phase diagram of a system with solid solution)1、形成完全互溶的固溶体、形成完全互溶的固溶体:这类系统的液相完全互溶,固相也完全互溶。例如AuAg,AuCuTTAuAuAgx(Ag) x(Cu) Culsl+slsl+sl+s理想或近于理想不理想程度很高2、形成部分互溶的固溶体、形成部分互溶的固溶体:这类系统的液相完全互溶,固相部分互溶。例如AgCu等。这类系统的相图如下:TABxBl(M)+l(E)+(N)l+l+MNETlABxBl+MNEl+l(M)(E)+(N)作业:作业:19,20,30 补充题:指出相图中各区域所代表的相态补充题:指出相图中各区域所代表的相态 TABl阅读:阅读:A. 10.3 10.4610 关于二元相图的总结一、一、 七张基本相图七张基本相图高温相和低温相均完全互溶,且低温相理想或近于理想。高温相和低温相均完全互溶,且低温相不理想。部分互溶双液系或部分互溶双固系高温相完全互溶,低温相完全不互溶。例如苯水的g-l图具有稳定化合物的s-l图具有不稳定化合物的s-l图高温相完全互溶,低温相部分互溶+相图的关系与演变相图的关系与演变+:+:互溶度变小极限互溶度变大极限二、关于二元相图的基本要求二、关于二元相图的基本要求读图、作图、用图关键是读图:能熟练地读懂由七张基本相图组合而成的稍微复杂的相图。读图要领:如何找三相线上的三个相点?如何在两相区找相点?上下看图,任意相邻两区的相数不可能相等。611 三组分系统的相图分析(Diagram for 3-component system) (自学为主)f 32 5 相律分析:相律分析:max = 5 = 1 时,f=4(四维坐标)若T,p指定,则 f=2 平面图一、三角坐标系一、三角坐标系 (Triangular coordinate)通常用三角坐标表示三组分系统的组成BACDE*PB含量C含量A含量等边三角形的三个顶点分别代表三个纯物质三条边分别代表三个两组分系统。例如,D点含80B,20C的BC二元系统三角形内任一点代表一个三组分系统。例如,P点代表含A30(DE),含B50(EC),含C20(BD)的三组分系统。反之,若已知某个三元物系的组成,则可在底边上找到两个相应的分点,过之分别做两侧边的平行线,交点即为物系点。三角坐标的规律性(自学)三元相图一般比二元复杂,形式和花样众多。本课只介绍常用的两种情况,如下二、部分互溶三液系的相图二、部分互溶三液系的相图 (Diagram for partially miscible 3-liquid system) A(l)、B(l)、C(l)若完全互溶,则整个坐标区为均相;若完全不互溶,则整个坐标区为三相区,A、B、C即为三个相的相点。若部分互溶一个液对部分互溶两个液对部分互溶三个液对部分互溶1、一个液对部分互溶、一个液对部分互溶:例如,HAc-C7H8(甲苯) -H2O,其中只有C7H8-H2O部分互溶。C7H8HAcH2Oa2aa1a3bb1b2b3相区相区:如图连接线连接线:共轭溶液的相点连线(实验测)ll1+l22、二个液对部分互溶、二个液对部分互溶:例如,BACll1+l2A-BA-C部分互溶l1+l2BACll1+l2l若T,则互溶度,共轭区3、三个液对部分互溶:、三个液对部分互溶:BACll1+l2l1+l2BACll1+l2l若T,则可能相交(本图只画出三区相交情况)l1+l2l1+l2l1+l2lDEFl(D)+l(E)+l(F)三、二盐水系统的相图三、二盐水系统的相图 (Diagram for a system consisting of 2 salts and water)盐A、B与水三组分系统的s-l平衡分以下四种情况1、不形成复盐和水合物、不形成复盐和水合物复盐和水合物:如Li2SO4与(NH4)2SO4可形成复盐NH4LiSO4, Li2SO4与H2O可形成水合物Li2SO4 H2O 这类系统的相图(T,p=const.)为BAH2OlEDFl(E)+A(s)+B(s)l+A(s)l+B(s)区:如图线:DEA的溶解度曲线FEB的溶解度曲线点:D A在纯水中的溶解 度 (饱和溶液的相点)F B在纯水中的溶解度E 对A和B同时饱和 的溶液相点2、形成复盐但不形成水合物、形成复盐但不形成水合物下图以形成一种复盐为例AH2OlD(复盐)l+D(s)l+A(s)l+B(s)Bl+A(s)+D(s)l+B(s)+D(s)线、点意义如何?(自学)3、不形成复盐而形成水合物、不形成复盐而形成水合物下图以形成一种水合物为例AH2OlD(水合物)l+D(s)l+A(s)l+B(s)Bl+A(s)+B(s)l+B(s)+D(s) 线、点意义如何?(自学) 这类系统相图还有其他形式4、既形成复盐也形成水合物、既形成复盐也形成水合物下图以各一种为例AH2OlE(水合物)l+El+Al+DBl+A+DE+D+B 线、点意义如何?(自学) 这类系统相图还有其他形式l+E+DD(复盐)相平衡相平衡基本教学要求基本教学要求1.相律及其应用相律及其应用2.纯物质两相平衡的计算纯物质两相平衡的计算3.相图:二元相图的相图:二元相图的读图读图和用图和用图第七章第七章第七章第七章 化学平衡化学平衡化学平衡化学平衡Chapter 7 Chemical EquilibriumChapter 7 Chemical Equilibrium 化学平衡的概念化学平衡的概念(即化学反应为什么不进行到底)原模型:无混和,所以,反应会进行到底只有少数反应如此,例如CaCO3分解大多数实际反应:有混和, ,所以反应不进行完全,而留下部分反应物参与混和过程。所以:反应不进行到底,主要是由于存在混和效应。 本本章章重点重点:化学平衡的热力学本质71 化学反应的方向和限度(Direction and limit of chemical reaction)一、化学平衡的条件一、化学平衡的条件 (Condition of chemical eq.) 对任意反应eq.等T, p, w=0时二者统一。因为在等T, p的巨大反应系统中发生1mol上述反应时: 对发生化学反应的系统在等T, p下:即 在等T, p下:即 随而改变:( ,产 反,即) eq. GminGminG反应物产物eq.T,p=const.
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号