资源预览内容
第1页 / 共136页
第2页 / 共136页
第3页 / 共136页
第4页 / 共136页
第5页 / 共136页
第6页 / 共136页
第7页 / 共136页
第8页 / 共136页
第9页 / 共136页
第10页 / 共136页
亲,该文档总共136页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
第三章第三章流体运动理论与动力学基础流体运动理论与动力学基础3.13.13.13.1 流体运动的描述方法流体运动的描述方法3.23.23.23.2 流场的基本概念流场的基本概念3.33.33.33.3 连续方程连续方程3.43.43.43.4 恒定总流的伯努利方程恒定总流的伯努利方程3.5 3.5 3.5 3.5 恒定总流的动量方程恒定总流的动量方程恒定总流的动量方程恒定总流的动量方程戌妹篡儒劳策葛歇蚊钨印侈狰歇都预芳害遗穴形戌芋混磅菊霖秧曙辣行乾第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础1教学目的和任务1 1)教学目的)教学目的 使学生掌握研究流体运动的方法,了解使学生掌握研究流体运动的方法,了解流体流动的基本概念。流体流动的基本概念。 通过分析得到理通过分析得到理想流体运动的基本规律,想流体运动的基本规律, 为后续流动阻为后续流动阻力计算、管路计算打下牢固的基础。力计算、管路计算打下牢固的基础。揭动漂弊帐俏哥焕睁滁脓兜哟佑倘驱摩吗廖书裸蝉身葫坛饼龋突均毫盒右第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础2 2)基本内容)基本内容(1)正确使用流体流动的连续性方程式;)正确使用流体流动的连续性方程式;(2)弄清流体流动的基本规律)弄清流体流动的基本规律伯努利方程,得伯努利方程,得出比较符合客观实际的计算出比较符合客观实际的计算 公式;掌握伯努利方公式;掌握伯努利方程的物理意义、几何意义、使用条件及其应用程的物理意义、几何意义、使用条件及其应用(3)动量方程的应用)动量方程的应用2 2重点、难点重点、难点重点:连续性方程、伯努利方程和动量方程。重点:连续性方程、伯努利方程和动量方程。难点:应用三大方程联立求解工程实际问题。难点:应用三大方程联立求解工程实际问题。亿之凰铀菇娘肮千怔醒控课奖孟妇涅延保椰晒回图聂华敬谰寺祷雇蝎智锅第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础一、流体运动要素一、流体运动要素Conception:表征流体运动状态的物理量,一般包表征流体运动状态的物理量,一般包括括 等。等。w 研究流体的运动规律,就是要确定这些运动要素。研究流体的运动规律,就是要确定这些运动要素。 1)每一运动要素都随空间与时间在变化;)每一运动要素都随空间与时间在变化; 2)各要素之间存在着本质联系。)各要素之间存在着本质联系。3.1 3.1 流体运动的描述方法流体运动的描述方法*流场充满运动的连续流体的空间。在流场中,每个流体质点均有确定的运动要素。兄疤拐疙颊鸽穴质阅叠硬和跨夏家霍届鸣禹异字艾盗廉拿肛桓臂家餐物拈第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础拉格朗日,法国数学家、物理学家。1736年1月25日生于意大利西北部的都灵,1813年4月10日卒于巴黎。19岁就在都灵的皇家炮兵学校当数学教授。在探讨“等周问题”的过程中,他用纯分析的方法发展了欧拉所开创的变分法,为变分法奠定了理论基础。他的论著使他成为当时欧洲公认的第一流数学家。1766年德国的腓特烈大帝向拉格朗日发出邀请说,在“欧洲最大的王”的宫廷中应有“欧洲最大的数学家”。于是他应邀去柏林,居住达二十年之久。在此期间他完成了分析力学一书,建立起完整和谐的力学体系。1786年,他接受法王路易十六的邀请,定居巴黎,直至去世。近百余年来,数学领域的许多新成就都可以直接或间接地溯源于拉格朗日的工作。豪陇牵屁目凹董渐嫁峪笺醛误闪纹悲撤翼优仆协锄规帘浮东种轮搪恒看将第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础欧拉(Euler),瑞士数学家及自然科学家。1707年4月15日出生於瑞士的巴塞尔,1783年9月18日於俄国彼得堡去逝。欧拉出生於牧师家庭,自幼受父亲的教育。13岁时入读巴塞尔大学,15岁大学毕业,16岁获硕士学位。欧拉是18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把数学推至几乎整个物理的领域。他是数学史上最多产的数学家,平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学、变分法等的课本,无穷小分析引论、微分学原理、积分学原理等都成为数学中的经典著作。欧拉对数学的研究如此广泛,因此在许多数学的分支中也可经常见到以他的名字命名的重要常数、公式和定理。获辐谎而称挡冗窑了剁锅芬霞秤瘩迟悬誓叛脏业罢粱咋亩基沧衣蔬洱鳞卸第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础1).1).1).1).方法概要方法概要方法概要方法概要1 1 1 1、拉格朗日法、拉格朗日法、拉格朗日法、拉格朗日法2).2).研究对象研究对象研究对象研究对象 流体质点流体质点 着眼于流体各质点的运动情况,研究各质点的运动历程,通过着眼于流体各质点的运动情况,研究各质点的运动历程,通过综合所有被研究流体质点的运动情况来获得整个流体运动的规律。综合所有被研究流体质点的运动情况来获得整个流体运动的规律。(“跟踪跟踪”的方法)的方法)拉格朗日法是拉格朗日法是将流场中每一流体质点作为研究对象,研究每将流场中每一流体质点作为研究对象,研究每一个流体质点在运动过程中的位置、速度、加速度及密度、一个流体质点在运动过程中的位置、速度、加速度及密度、重度、压强等物理量随时间的变化规律。然后将所有质点的重度、压强等物理量随时间的变化规律。然后将所有质点的这些资料综合起来,便得到了整个流体的运动规律。即将整这些资料综合起来,便得到了整个流体的运动规律。即将整个流体的运动看作许多流体质点运动的总和。质点的运动要个流体的运动看作许多流体质点运动的总和。质点的运动要素是初始点坐标和时间的函数。素是初始点坐标和时间的函数。 用于研究流体的波动和震用于研究流体的波动和震荡等荡等 二、研究流体运动的两种方法二、研究流体运动的两种方法加枯姿明仆樱攒诚剑滨钱诺淳舔诀苟离滚泳玻吐控损沥寝汕泅时庄裴诬戚第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础拉格朗日方法又称随体法,是从分析流场中个别流体质点着手来研究整个流体运动的。这种研究方法,最基本的参数是流体质点的位移,在某一时刻,任一流体质点的位置可表示为:X=x(a,b,c,t)y=y(a,b,c,t)z=z(a,b,c,t)(3-1)式中a、b、c为初始时刻任意流体质点的坐标,即不同的a、b、c代表不同的流体质点。对于某个确定的流体质点,a、b、c为常数,而t为变量,则得到流体质点的运动规律。对于某个确定的时刻,t为常数,而a、b、c为变量,得到某一时刻不同流体质点的位置分布。通常称a、b、c为拉格朗日变量,它不是空间坐标的函数,而是流体质点标号。艇立切庇斌蛇郡外蜀囱撇硒军转骄党掘亦芭矛富碧搞剥考饲五痹枷少涅稿第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础将式(3-1)对时间求一阶和二阶导数,可得任意流体质点的速度和加速度为:(3-2)(3-3)同样,流体的密度、压强和温度也可写成a、b、c、的函数,即= (a,b,c,),P=P (a,b,c,),t=t (a,b,c,)。褪佳阀斯魁缓到踢铸庭涉鳞丫拘腕然簿剃老芯侨标凌俊淆捎赴场班黍瞬南第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础1).1).1).1).方法概要方法概要方法概要方法概要2 2 2 2、欧拉法、欧拉法、欧拉法、欧拉法 着眼于着眼于流场中各空间点流场中各空间点时的运动情况,通过综合流场中所有时的运动情况,通过综合流场中所有被研究空间点上流体质点的运动变化规律,来获得整个流场的运被研究空间点上流体质点的运动变化规律,来获得整个流场的运动特性。动特性。2).2).研究对象研究对象研究对象研究对象 流场流场流场流场流场流场:充满运动流体的空间。充满运动流体的空间。 (“站岗站岗”的方法)的方法)欧拉法是欧拉法是以流场中每一空间位置作为研究对以流场中每一空间位置作为研究对拓撂雀纱啸波艺秤宇己狈折卵妓癌菇俏了瞻鲤改癌新晰巳付根判曙蔼毡峰第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础3).3).3).3).运动描述运动描述运动描述运动描述流速场:流速场: 压强场:压强场: 密度场:密度场: 其他物理量(其他物理量(N N)场:)场: (3-4)脾瞒晴孤培吓噶围绳彻章荣撂坤洲壕脏夫烂购漱辩纤瓤擦蓬揽烦莉矛讲矿第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础4).4).4).4).加速度及其他物理量的时间变化率加速度及其他物理量的时间变化率加速度及其他物理量的时间变化率加速度及其他物理量的时间变化率(1 1)加速度)加速度 或或(3-5)劳靡吊屎戊曲今旋舀舟瓷迂摹掠荧瘴钳骄蜘钒撕糙偷艺蚕汗搁锡酋爱镰窟第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础4).4).4).4).加速度及其他物理量的时间变化率(续)加速度及其他物理量的时间变化率(续)加速度及其他物理量的时间变化率(续)加速度及其他物理量的时间变化率(续)(1 1)加速度)加速度 当地加速度。表示通过固定空间点的流体质点速度随时间的当地加速度。表示通过固定空间点的流体质点速度随时间的变化率;变化率;迁移加速度。表示流体质点所在空间位置的变化所引起的速迁移加速度。表示流体质点所在空间位置的变化所引起的速度变化率。度变化率。要静奈伴造震炕一吊缕堰猴柯艇菠淘优蛙亦弊孪救痒墙辨籽数写岩习晰舔第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础(2 2)其他物理量的时间变化率)其他物理量的时间变化率 密度:密度: 撑政诺捞音粤拣巴紊翱辈喻埔欣域幸衔绞众物家碎餐札木揽漳氧模馈括恰第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础三、两种方法的比较三、两种方法的比较三、两种方法的比较三、两种方法的比较在研究工程流体力学时主要采用欧拉法。在研究工程流体力学时主要采用欧拉法。 由上述可知,采用欧拉法描述流体的流动,常常比采用拉格朗日法优越,其原因有三。一是利用欧拉法得到的是场,便于采用场论这一数学工具来研究。二是采用欧拉法,加速度是一阶导数,而拉格朗日法,加速度是二阶导数,所得的运动微分方程分别是一阶偏微分方程和二阶偏微分方程,在数学上一阶偏微分方程比二阶偏微分方程求解容易。三是在工程实际中,并不关心每一质点的来龙去脉。基于上述三点原因,欧拉法在流体力学研究中广泛被采用。当然拉格朗日法在研究爆炸现象以及计算流体力学的某些问题中还是方便的。 高痊勘扦帧兜矽藕亦烩猴上郸枣夏邯湘荆箍汕糙仑蜕捆晒楔津九爆拙候鹤第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础【例例3-1】已知用拉格朗日变量表示得速度分布为u=(a+2)et-2,v=(b+2)et-2,且t=0时,x=a,y=b。求(1)t=3时质点分布;(2)a=2,b=2质点的运动规律;(3)质点加速度。【解解】根据(3-2)式得将上式积分,得上式中c1、c2为积分常数,它仍是拉格朗日变量的函数。利用t=0时,x=a,y=b得c1=-2,c2=-2浚凤区和度链剔珐悦惕骇馋镐五漾惹砸壳普莉摊眷腆宦米湛络咕只闰兑傻第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础X=(a+2)et-2t-2y=(b+2)et-2t-2(1)将t=3代入上式得X=(a+2)e3-8y=(b+2)e3-8(2)a=2,b=2时x=4et-2t-2y=4et-2t-2 (3)肖急宏怕竹豹坦防廊焊凹寨哗潞赵坛卯纵谦斥沧沮汰肉澈伶浩感钞颖焦榔第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础【例例3-2】在任意时刻,流体质点的位置是x=5t2,其迹线为双曲线xy=25。质点速度和加速度在x和y方向的分量为多少?【解解】根据式(3-4)得由式(3-5)得叼日貉谓荚飞绽炉描粪贷元障巧棍倦尔买扭林漠冷戈晴随酥虫徊孕乳岳称第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础3.2 3.2 流场的基本概念流场的基本概念w按照流体性质分:按照流体性质分:理想流体的流动和粘性流体的流动理想流体的流动和粘性流体的流动不可压缩流体的流动和不可压缩流体的流动不可压缩流体的流动和不可压缩流体的流动w按照流动状态分:按照流动状态分:恒定流动和非恒定流动恒定流动和非恒定流动有旋流动和无旋流动有旋流动和无旋流动层流流动和紊流流动层流流动和紊流流动w按照流动空间的坐标数目分:按照流动空间的坐标数目分:一维流动、二维流动和三维流动一维流动、二维流动和三维流动财彭恼漠什孜墨要身兄料热适争疯栏锗诉诈名泻舒靠颗犊抠骸谱犀锭日瞩第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础一、恒定流动和非恒定流动一、恒定流动和非恒定流动1. 1. 恒定流动恒定流动流动参量流动参量不随不随时间变化的流动。时间变化的流动。特点:流场内的速度、压强、密度等参量只是坐标的函特点:流场内的速度、压强、密度等参量只是坐标的函数,数, 而与时间无关。而与时间无关。即:即:午骑莱队金伪旭崩痹像宽佐传异涨焦奸舟握作娥喝鼓硒愁哀溪涅污碳矫洒第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础2. 2. 非恒定流动非恒定流动流动参量流动参量随随时间变化的流动。时间变化的流动。特点:流场内的速度、压强、密度等参量不仅是坐标的函特点:流场内的速度、压强、密度等参量不仅是坐标的函数,数, 而且与时间有关。而且与时间有关。即:即:扶汲甥篙婴疡涎屑赊蛤偷靛锈舔粘达于衔食汽渭炮枢列严辊戈蝶巫窥孤提第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础二、一维流动、二维流动和三维流动二、一维流动、二维流动和三维流动流动参量是几个坐标变量的函数,即为几维流动。流动参量是几个坐标变量的函数,即为几维流动。一维流动一维流动二维流动二维流动三维流动三维流动1. 1. 定义定义2 .2 .2 .2 .实际流体力学问题均为三元流动。工程中一般根据具实际流体力学问题均为三元流动。工程中一般根据具体情况加以简化。体情况加以简化。 眯谣忧莆祈逃胖随绝酞炕么海耶厌呻沽枣匿侧河柠奎砍札涨市诺稗像粕婶第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础一)、迹线一)、迹线流体质点的运动轨迹。是流体质点的运动轨迹。是拉格朗日方法拉格朗日方法研究的内容。研究的内容。1. 1. 定义定义迹线:迹线:某一液体质点在运动过程中,不同时刻某一液体质点在运动过程中,不同时刻所流经的空间点所连成的线称为迹线,即液体所流经的空间点所连成的线称为迹线,即液体质点运动时所走过的轨迹线。质点运动时所走过的轨迹线。三、流线和迹线三、流线和迹线迹线微分方程,是自变量。(3-6)浴职涂缮垂此艘箔旱笆值瑟庙泰匈糖丘诉毯窝译嚣酸焊母耍胶题框索扔刃第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础二)、流线二)、流线在同一瞬间,位于某条线上每一个流体微团的速度矢量都与此在同一瞬间,位于某条线上每一个流体微团的速度矢量都与此线在该点的切线重合,则这条线称为流线。适于线在该点的切线重合,则这条线称为流线。适于欧拉方法欧拉方法。1. 1. 定义定义u21uu2133u6545u46u流线流线赔茵哑窿列票拎陵磐普遭尘叠火丘岳都例焉垃嗅穷嗽恒刘经枝秋日田醋蕾第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础2. 2. 流线微分方程流线微分方程u21uu2133u6545u46u流流线线(3-7)欠碍菏脂彼投锤茸妥类藐精讨竞特胺稽固女窿崭承铰堂窄从跺挫阴棱册捞第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础3. 3. 流线的性质流线的性质(1 1)流线彼此不能相交。)流线彼此不能相交。(2 2)流线是一条光滑的曲线,)流线是一条光滑的曲线, 不可能出现折点。不可能出现折点。(3 3)恒定流动时流线形状不变,)恒定流动时流线形状不变, 非恒定流动时流线形状发生变化。非恒定流动时流线形状发生变化。v1v2s1s2交点v1v2折点s料债隘弊等偷蓑下选甲锰痴疑寝体愿眼诧雷倦逞跨遵础处咬绢铸琅蛔婆仪第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础【例例3-33-3】 有一流场,其流速分布规律为:u= -ky,v= kx,w=0,试求其流线方程。 【解解】 由于w=0,所以是二维流动,二维流动的流线方程微分为 将两个分速度代入流线微分方程得到: xdx+ydy=0 即 积分上式得到 x2+y2=c 即流线簇是以坐标原点为圆心的同心圆。铸杂施杉踪峻品衣傻历胸峭爷粹交乱缸呢廓惨颜雏贡咽著丈阀颐渴诵佐帚第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础一)、流管一)、流管 流束流束1. 1. 流管流管 流束流束流管:在流场内任意作一封闭曲线(不是流线),通过封闭曲线流管:在流场内任意作一封闭曲线(不是流线),通过封闭曲线 上所有各点作流线,所形成的一个封闭的管状曲面称为流管。上所有各点作流线,所形成的一个封闭的管状曲面称为流管。流束:流束:流管内部的流体称为流束。流管内部的流体称为流束。封闭曲线封闭曲线无限小无限小时所形成的流管时所形成的流管四、流管四、流管 流束流束 流量流量菲蝴邑仁节饵懦盈择臀轨躺嘶眨肋时并澎嫩要捶雇强射忍咬秦赌祟回韶边第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础2. 2. 微元流管微元流管 微元流管:封闭曲线微元流管:封闭曲线无限小无限小时所形成的流管时所形成的流管微元流管的极限为微元流管的极限为流线流线梦晶嚣趾梢名部弃甲胚玉樱狮愧婚广数盒钮赴醋里健冤牙糊页跑橇冷涅最第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础 任任何何一一个个实实际际水水流流都都具具有有一一定定规规模模的的边边界界,这这种种有有一一定定大大小小尺尺寸寸的的实实际际水水流流称称为为总总流流。总总流流可可以以看看作作是是由由无无限限多多个个微微小流束所组成。小流束所组成。3 3、总流、总流郭腺泄浸晕层农架詹仁辨狞烃伏暴诵籍渐阔姜槽魄当存缕疗婴瓜另宇猜猪第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础4、过水断面、过水断面 与微小流束或总流的流线成正交的横断面称为过水断面。该面与微小流束或总流的流线成正交的横断面称为过水断面。该面积积dA或或A称为过水面积,单位称为过水面积,单位m2。注意:注意:过水断面可为平面过水断面可为平面也可为曲面。也可为曲面。显科位鬼乙救藩延铀能始然羽蓉感颁舒茸香装钝怕暑涣致折芽缎摘镊受锹第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础5、流量、流量 单单位位时时间间内内通通过过某某一一过过水水断断面面的的液液体体体体积积称称为为流流量量。流流量量常常用用的的单位为单位为米米秒(秒(m3/s),符号表示。),符号表示。 微小流束流量微小流束流量dQdQ总流流量总流流量 6、断面平均流速、断面平均流速 总总流流过过水水断断面面上上的的平平均均流流速速,是是一一个个想想象象的的流流速速,如如果果过过水水断断面面上上各各点点的的流流速速都都相相等等并并等等于于,此此时时所所通通过过的的流流量量与与实实际际上上流流速速为不均匀分布时所通过的流量相等,则流速为不均匀分布时所通过的流量相等,则流速就称为断面平均流速。就称为断面平均流速。 霓嗡霉伟铝陇魏颧藕闰破恿仟梳甫挠北尧拆毅汝段椰娃蒙壳板歇吻幽颧智第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础 由此可见,通过总流过水断面的流量等于断面由此可见,通过总流过水断面的流量等于断面平均流速与过水断面面积的乘积,也即过水断面上平均流速与过水断面面积的乘积,也即过水断面上各点水流均以同一平均流速运动。引入断面平均流各点水流均以同一平均流速运动。引入断面平均流速的概念,可以使水流运动的分析得到简化。速的概念,可以使水流运动的分析得到简化。痒柏蕾走丽洪骨盟峻烽霜慕剧惯滞秤戌渗窗刽拎转拢衣丈摆也嚏棱高纠往第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础五、五、均匀流与均匀流与非均匀流非均匀流一)、一)、均匀流:均匀流:当水流的流线为相互平行的直线时,当水流的流线为相互平行的直线时,该水流称为均匀流。该水流称为均匀流。 均匀均匀流具有以下特性:流具有以下特性: 1均均匀匀流流的的过过水水断断面面为为平平面面,且且过过水水断断面面的的形形状状和和尺尺寸沿程不变。寸沿程不变。2均均匀匀流流中中,同同一一流流线线上上不不同同点点的的流流速速应应相相等等,从从而各过水断面上的流而各过水断面上的流速分布相同,断面平均流速相等。速分布相同,断面平均流速相等。3均均匀匀流流过过水水断断面面上上的的动动水水压压强强分分布布规规律律与与静静水水压压强强分分布布规规律律相相同同,即即在在同同一一过过水水断断面面上上各各点点测测压压管管水水头头为为一常数。一常数。绣窒卧匠尉舰慈蚜吁鸵廖瘦棒湃兆弄榨诲猜悄搭艺唁牲因翁堑每簿敏蚌罕第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础二)、非均匀流二)、非均匀流 若水流的流线不是相互平行的直线该水流称为若水流的流线不是相互平行的直线该水流称为非均匀流非均匀流按按照照流流线线不不平平行行和和弯弯曲曲的的程程度度,分分为为渐渐变变流流、急急变变流流两两种种类型:类型:1 1渐变流渐变流当水流的流线虽然不是相互平行直线,但几乎近于平行当水流的流线虽然不是相互平行直线,但几乎近于平行直线时称为渐变流(缓变流)。渐变流的极限情况就是均匀直线时称为渐变流(缓变流)。渐变流的极限情况就是均匀流。流。2 2急变流急变流 若水流的流线之间夹角很大或者流线的曲率半径很小,若水流的流线之间夹角很大或者流线的曲率半径很小,这种水流称为急变流。这种水流称为急变流。注意:注意:渐变流动水压强服从静水压强分布;而急变流动水渐变流动水压强服从静水压强分布;而急变流动水压强分布特性复杂。压强分布特性复杂。戏偿但河济累瑟辖拐屁效匿汽疏逾境轻腺韶焰堑捣象他谋商奖俱兔冒卵授第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础 渐变流和急变流渐变流和急变流 通常边界近于平通常边界近于平行直线时水流往行直线时水流往往是渐变流。管往是渐变流。管道转弯、断面突道转弯、断面突扩或收缩水工建扩或收缩水工建筑物引起水面突筑物引起水面突变水流为急变流变水流为急变流。岸冰汲诉填觅院脏衡广蝉移涧夜赤花埔怪谚煽命托髓咸另早胡篇据雀饺皮第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础六、湿周六、湿周 水力半径水力半径 1.1.湿周湿周在有效截面上,流体同固体边界接触部分的周长在有效截面上,流体同固体边界接触部分的周长2.2.水力半径水力半径R=2R=AB+BC+CDABCD=ABCABC有效截面积与湿周之比称为水力半径有效截面积与湿周之比称为水力半径缄缉拨梁久平隶溯独氟姆姨鳞员认砂仍旁填伴札任煞冈赎撇危睛震伤陡鼠第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础连续性方程是质量守恒定律在流体力学中的应用。我们认为流体是连续介质,它在流动时连续地充满整个流场。在这个前提下,当研究流体经过流场中某一任意指定的空间封闭曲面时,可以断定:若在某一定时间内,流出的流体质量和流入的流体质量不相等时,则这封闭曲面内一定会有流体密度的变化,以便使流体仍然充满整个封闭曲面内的空间;如果流体是不可压缩的,则流出的流体质量必然等于流入的流体质量。上述结论可以用数学分析表达成微分方程,称为连续性方程。3.3 3.3 连续性方程连续性方程凤宵凸沼扼捶蜜灌竭糖剑疆摊伏勒启扰吓狂蹄着航众议贰督冈刊密怪阐促第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础 一、直角坐标系下连续性微分方程式一、直角坐标系下连续性微分方程式设在流场中任取一个微元平行六面体,其边长分别为dx、dy和dz,如图所示。假设微元平行六面体形心的坐标为x、y、z,在某一瞬时t经过形心的流体质点沿各坐标轴的速度分量为u、v、w,流体的密度为。现讨论流体经六面体各面的流动情况。先分析x轴方向,由式欧拉法可知,u和都是坐标和时间的连续函数,即u=u(x,y,z,t)和=(x,y,z,t)。根据泰勒级数展开式,略去高于一阶的无穷小量,得在d时间内,沿轴方向从左边微元面积dydz流入的流体质量为椒色佯煌症厉违帆蝗先糠师败早犬桑贿咒足樟题敬邓渴廉惠封俯谱吹沼异第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础图 流场中的微元平行六面体九瑟惩涤蒙提油栽雇纪隐沿馏镀摄啦颜宴谢军版惰仔俯收姿概彰扭蚀煎躁第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础同理可得在dt时间内从右边微元面积dydz流出的流体质量为上述两者之差为在dt时间内沿x轴方向流体质量的变化,即币依杀望蠢卢穴泅甩通网质忍戈券苫涯吞黍挛癣爵侦盘羚殴组豹魄贪柱禁第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础同理可得,在dt时间内沿y轴和z轴方向流体质量的变化分别为:因此,在dt时间内经过微元六面体的流体质量总变化为由于流体是作为连续介质来研究的,所以上式所表示的六面体内流体质量的总变化,唯一的可能是因为六面体内流体密度的变化而引起的。因此上式应和由于流体密度的变化而产生的六面体内的流体质量变化相等。设开始瞬时流体的密度为,经过dt时间后的密度为吮惶经轨歉轰僻捻真津饶虎架庸都聂似风魔唇匿舒评畔怎苟忍骄雍典裹山第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础则可求出在dt时间内,六面体内因密度的变化而引起的质量变化为根据连续性条件,经简化得到式为可压缩流体非定常三维流动的连续性方程。若流体是定常流动,则,上式成为式为可压缩流体定常三维流动的连续性方程。若流体是不可压缩的,不论是定常或非定常流动均(3-8)(3-9)兔北予或趣觉淘漫雌靖布淮搀腋耘灿陈俺宦犬让戎词橇携蕊扰菏筹础鹰斩第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础为常数,故上式成为上式为不可压缩流体三维流动的连续性的方程。它的物理意义是:在同一时间内通过流场中任一封闭表面的体积流量等于零,也就是说,在同一时间内流入的体积流量与流出的体积流量相等。在流体力学中时常讨论所谓平面(二维)流动,即平行任何一个坐标平面的流动。若这种流动的流动参数(如速度、压强)只沿x、y两个坐标轴方向发生变化,则上式可以写成由于在推导上述连续性方程时,没有涉及作用力的问题,所以不论是对理想流体还是实际流体都是适用的。(3-10)(3-11)诸崖殴嚏系舍虽篡谎灵味葬粗此官怪滥腔确姓馏财椭文拖团缺骆援蝴陡牟第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础 二、微元流束和总流的连续性方程二、微元流束和总流的连续性方程 在工程上和自然界中,流体流动多数都是在某些周界所限定的空间内沿某一方向流动,即一维流动的问题,所谓一维流动是指流动参数仅在一个方向上有显著的变化,而在其它两个方向上的变化非常微小,可忽略不计。例如在管道中流动的流体就符合这个条件。在流场中取一微元流束。假定流体的运动是连续的、定常的,则微元流管的形状不随时间而改变。又根据流管的特性,流体质点不能穿过流管表面,因此在单位时间内通过微元流管的任一有效截面的流体质量都应相等,即1V1dA1=2V2dA2=VdA=常数式中dA1、dA2分别为1、2两个有效截面的面积,m2;吱航搭挨梭锦芬沼绣替域指择就醉莱掘类凰乎冕隋颜颇镐等砰吉储抗掠诧第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础图 流场中的微元流束颅啪垂孤妙共范缆箕汉听守瓶苹病聋神恒案机码浙努蒸龋痔宏滴蛮侮他煌第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础V1、V2分别为dA1和dA2上的流速,也称为真实流速,m/s;1、2分别为和处的流体密度,kg/m3。对于由无限多微元流束所组成的总流(例如流体在管道中的流动),可对式进行积分得式中A1和A2分别为总流1和2两个有效截面的面积,m2。为一维流动积分形式总流的连续性方程。设和是总流两个有效截面l和2上的平均流速,则上式可写成(3-12)(3-13)净瓶轴饯叹削丙彩苦胜饼损涕龚南貉猛礁瀑憎索望壮列揖浚还僚倾浅粮哦第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础式中1和2分别代表截面和上的平均密度,kg/m3。(3-13)式表示当流动为可压缩流体定常流体动时,沿流动方向的质量流量为一个常数。对不可压缩均质流体常数,则上式成为(3-14)式为不可压缩流体一维定常流动的总流连续性方程。该式说明一维总流在定常流动条件下,沿流动方向的体积流量为一个常数,平均流速与有效截面面积成反比,即有效截面面积大的地方平均流速小,有效截面面积小的地方平均流速就大。(3-14)不雷身与捂将瑰已芥覆炊狗柄蜀板檬垦糟向应临辉钥雕雪毅绷达膊培叮希第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础【例例3-4】假设有一不可压缩流体三维流动,其速度分布规律为)U=3(x+y3),v=4y+z2,w=x+y+2z。试分析该流动是否连续。【解解】根据(3-10)式所以故此流动不连续。不满足连续性方程的流动是不存在的乎啼携烫爷涡粥尖徐镑谊郡括哨汲云懈唬热贬酒氧勤幽茵勇膀段尼肩墨颠第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础【例例3-5】有一不可压缩流体平面流动,其速度分布规律为u=x2siny,v=2xcosy,试分析该流动是否连续。【解解】根据(3-10)式所以故此流动是连续的。郝蒜炕衬慰铺障码泛屯荚窥踌镊椿陡罕啥员渍拖氢尖拧挂品窟解租蓉伪何第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础【例例3-6】有一输水管道,如图所示。水自截面1-1流向截面2-2。测得截面1-1的水流平均流速m/s,已知d1=0.5m,d2=1m,试求截面2-2处的平均流速为多少?【解解】由(3-14)式得(m/s)到歌叶尧化皖轴膳貉俗网迂样翰破兄躬拧藐丁视侄招突扯焦免偷鳞增纵留第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础图 输水管道蒋闰递油距猿洲衫耕戳舱灿究企腋炳厂雨则凳津宇显龟肿刷篇验厂捻并谦第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础一、连续方程(积分形式)一、连续方程(积分形式)本质:质量守恒定律本质:质量守恒定律单位质量单位质量系统的质量系统的质量总结总结吓敷蓉霜饥板千攘抱谚蓬找舷谷取族箔抛收秩网勉械索穆八概更罗倡礁媒第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础二、连续方程的其它形式二、连续方程的其它形式定常流动:定常流动:定常流动条件下,通过控定常流动条件下,通过控制面的流体质量等于零制面的流体质量等于零一维定常流:一维定常流:不可压缩一不可压缩一维定常流:维定常流:在定常流动条件下,通过在定常流动条件下,通过流管的任意有效截面的流管的任意有效截面的质质量流量量流量是常量是常量。在定常流动条件下,通过在定常流动条件下,通过流管的任意有效截面的流管的任意有效截面的体体积流量积流量是常量是常量。岸仕牛送慈摆椒妥欣怨霸胚罩怠吗诚帘酥哦客室届举傻招虎蕉晃恕柠葬昂第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础在流动的理想流体中,取出一个微元平行六面体的微团,它的各边长度分别为dx、dy和dz,如图所示。由于是理想流体,没有黏性,运动时不产生内摩擦力,所以作用在流体微团上的外力只有质量力和压强。该压强与静压强一样,垂直向内,作用在流体微团的表面上。假设六面体形心的坐标为x、y、z,压强为p。先分析x方向的运动,在垂直于x轴的左右两个平面中心点上的压强各等于由于是微元面积,所以这些压强可以作为各表面上的3.4 3.4 恒定总流的伯努利方程恒定总流的伯努利方程慎歹务亮修安矢戊畴曰泞例宫孙究烤弘否亮矮堵拂齿答笺秃淳欺默瘦敦滋第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础图 推导欧拉运动微分方程用图烩泽掺惧想党严淤榜妮仟氟拐揪四罩锯膳谭先健每访息功删擦颖柠尚钮逼第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础平均压强。设在六面体形心上的单位质量的质量力分量为fx、fy和fz,则作用在微元平行六面体的流体微团上的质量力在轴方向的分量为fxdxdydz又流体微团的加速度在x轴上的投影为,则根据牛顿第二定律得x轴方向的运动微分方程将上式各项除以流体微团的流体质量dxdydz,化简后得:同理(3-16)(3-15)颜熏倚议唱回润务卫驰洼蘑型予呛咏蜘密胚朵夫裹步栖逢痛秩蚀岔寄全鹅第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础这就是理想流体的运动微分方程,早在1755年就为。对于静止的流体u=v=w=0,则由式可以直接得出流体平衡微分方程,即欧拉平衡微分方程式(2-3)。因此欧拉平衡微分方程只是欧拉运动微分方程的一个特例。如果把加速度写成展开式,可将欧拉运动微分方程写成如下形式(3-17)庚梢慨僵睹硫酪窒怨祈培居梁卿疥川松围胜功罗必诅弦扬侣怕挥瑟超瀑团第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础在一般情况下,作用在流体上的质量力fx、fy和fz是已知的,对理想不可压缩流体其密度为一常数。在这种情况下,上式中有四个未知数u、v、w和p,而上式中有三个方程,再加上不可压缩流体的连续性方程,就从理论上提供了求解这四个未知数的可能性。郝洱熙畜毖倔砷跑氓已界爬档林斋民暂架软旺白饯扒域铺裳投惭扬颜鹿睁第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础一、理想流体微元流束的伯努利方程一、理想流体微元流束的伯努利方程理想流体的运动微分方程上式只有在少数特殊情况下才能求解。在下列几个假定条件下:(1)不可压缩理想流体的定常流动;(2)沿同一微元流束(也就是沿流线)积分;(3)质量力只有重力。即可求得理想流体微元流束的伯努利方程。假定流体是定常流动,则有,靶帧流稗槛溺牢芥秸巴曼脆庆详撞苗扇靶留凛慢疙叹戳末滚雇隶考儡炊诗第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础因此式可写成(3-18)假如流体微团沿流线的微小位移ds在三个坐标轴上的投影为dx、dy和dz。现用dx、dy和dz分别乘以式(3-18)的第一式、第二式和第三式,则可得到凌逮骂际得拔尉止趟呼种茂作串码亩吉钧斧裔想象满骇蒋者株刁蝴跋睡至第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础(3-19)由流线微分方程有udy=vdxydz=wdywdx=udz将式(3-19)代入式(3-18)中的对应项,则得(3-20)央粪政藏亲潮馅耍胎薪荫阂治谭趁踪猩编腺戳沉趁它齿糊陷具谬霓烫活玫第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础(3-21)w将式(3-21)的三个方程相加,得到由于式(3-22)中的dx、dy和dz是流体微团沿流线微小位移ds的三个分量,所以要沿流线(或微元流束)进行积分。(3-22)翘韭洽躬账秆硝腰捆转橇化咋冬疫埠羊隙儒哺歪条咙汾戌捕雅筛烦姥椰购第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础式(3-22)中的假设质量力只有重力,fx=0,fy=0,fz=-g,即z轴垂直向上,oxy为水平面。则式(3-22)可写成又假设为不可压缩均质流体,即=常数,积分后得或式(3-23)称为理想流体微元流束的伯努利方程。方程右边的常数对不同的流线有不同的值。该方程的适用范围(3-23)岿树促距揍爵赡帖矣辑穷捞挂采荚扣滤男己玫颗宫扮入盟煽歇收某速砒臼第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础是:理想不可压缩均质流体在重力作用下作定常流动,并沿同一流线(或微元流束)。若1、2为同一条流线(或微元流束)上的任意两点,则式(3-23)也可写成在特殊情况下,绝对静止流体V=0,由式(3-24)可以得到静力学基本方程 二、方程的物理意义和几何意义二、方程的物理意义和几何意义为了进一步理解理想流体微元流束的伯努利方程,现来叙述该方程的物理意义和几何意义。 1、物理意义理想流体微元流束的伯努利方程式(3-24)中,左端(3-24)芥辣掖守报痛墙镣怨镇鸳新销撰酋颂膘位剿栈夕哄舅状蔚嘶淄呕咋亏赣隘第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础前两项的物理意义,在静力学中已有阐述,即第一项z表示单位重量流体所具有的位势能;第二项p/(g)表示单位重量流体的压强势能;第三项V2/(2g)理解如下:由物理学可知,质量为m的物体以速度V运动时,所具有的动能为Mv2/2,则单位重量流体所具有的动能为V2/(2g)即(mV2/2)/(mg)=V2/(2g)。所以该项的物理意义为单位重量流体具有的动能。位势能、压强势能和动能之和称为机械能。因此,伯努利方程可叙述为:理想不可压缩流体在重力作用下作定常流动时,沿同一流线(或微元流束)上各点的单位重量流体所具有的位势能、压强势能和动能之和保持不变,即机械能是一常数,但位势能、压强势能和动能三种能量之间可以相互转换,所以伯努利方程是能量守恒定律在流体力学中的一种特殊表现形式。篮逢虐邓竭拆烯拙骤久菲靡合竟病补搏缉撼俗卜湛玲蔑钵痔遁帧限膜畜靠第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础 2、几何意义图 理想流体微元流束的伯努利方程式(3-24)中,左端前两项的几何意义,同样在静力学中已有阐述,即第一项z表示单位重量流体的位置水头,第二项p/(g)表示单位重量流体的压强水头,第三项V2/(2g)与前两项一样也具有长度的量纲。它表示所研究流体由于具有速度V,在无阻力的情况下,单位重量流体所能垂直上升的最大高度,称之为速度水头。位置水头、压强水头和速度水头之和称为总水头。由于它们都表示某一高度,所以可用几何图形表示它们之间的关系,如图所示。因此伯努利方程也可叙述为:理想不可压缩流体在重力作用下作定常流动时,沿同一流线(或微元流束)上各点的单位重量流体所具有的位置水头、压强水头和速度水头之和保持不变,即总水头是一常数。褥相析查酬机炉醋把服操城犊悔宿纬眼疼皂舶氨磕峻泡器奔饲孩棠氖仁成第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础图 总水头线和静水头线癌达廖顺沥罪镐舶限查赏氖解砸慧胖锄竟鱼法诡演琅稀悸墅烤性青苗漂灶第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础皮托管测速仪皮托管测速仪在工程实际中,常常需要来测量某管道中流体流速的大小,然后求出管道的平均流速,从而得到管道中的流量,要测量管道中流体的速度,可采用皮托管来进行,其测量原理如图所示。在液体管道的某一截面处装有一个测压管和一根两端理想流体恒定元流能量方程的应用理想流体恒定元流能量方程的应用难辕迷控呵悟烯钎牡茄鲍辞汛理苏私大体是爹拾煞勒挞绥桨砒登佬己抵俞第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础VBAZZ 皮托管测速原理图退析抉开齿因民缀闷爹敢伪途集绸些葫您响曙靖臭澈照蘑襄龙贸俗顶欧岸第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础开口弯成直角的玻璃管(称为测速管)。将测速管(又称皮托管)的一端正对着来流方向,另一端垂直向上,这时测速管中上升的液柱比测压管内的液柱高h。这是由于当液流流到测速管入口前的A点处,液流受到阻挡,流速变为零,则在测速管入口形成一个驻点A。驻点A的压强PA称为全压,在入口前同一水平流线未受扰动处(例如B点)的液体压强为PB,速度为V。应用伯努利方程于同一流线上的、两点,则有则需怯饯冕徒躯馏程胯骚博示戮捍少猾桂簿似竿末篆狙戊勉赎区舵椿玻位伯第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础上式表明,只要测量出流体的运动全压和静压水头的差值h,就可以确定流体的流动速度。由于流体的特性,以及皮托管本身对流动的干扰,实际流速比用该式计算出的要小,因此,实际流速为式中流速修正系数,一般由实验确定,=0.97。如果测定气体的流速,则无法直接用皮托管和静压管测量出气柱差来,必须把两根管子连接到一个形差压计上,从差压计上的液面差来求得流速,如图所示,则则得巴藤嘘晓虐琵囱助仆枉昭木丝钙匠谭憋掉袭走锗股勘韶极录骗赶制韵婆柿第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础图 用皮托管和静压管测量气体流速戮蘸咖度芒追酣昭僳扯颓琐容掌瓜涤棒支孤父榨杏碟阁虑嚣忌去嗓舒佃服第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础考虑到实际情况,在工程应用中多将静压管和皮托管组合成一件,称为皮托静压管,又称动压管,习惯上常简称它为皮托管,其示意图如图所示。图中1点为总压测点,2点为静压测点,将总静压孔的通路分别连接于差压计的两端,则差压计的指示为总压和静压的差值,从而可由上式求得测点的流速。皮托-静压管的构造及使用方法。铀鼓打焕李会犬线昆疹瞬棺击脸烫床翼枢田钨刺磐而廖糊缉衙烩高床扩甥第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础图 皮托-静压管泰殃锚重焕谭疏懒名珍担鞠柠楼妥罚颜围侈庄卞邢师碧硅趟饿锈土阂甚毅第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础实际液体恒定元流的能量方程式实际液体恒定元流的能量方程式单位重量液体从断面单位重量液体从断面1-11-1流至断面流至断面2-22-2所损失所损失的能量,称为水头损失。的能量,称为水头损失。0012掂廓奥诡珠饲蛤烟政悬义吟艇借刻沫要烬树卖捏门溉抿撵禽臭讶形绝拔裂第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础将构成总流的所有微小流束的能量方程式叠加起来,将构成总流的所有微小流束的能量方程式叠加起来,即为总流的能量方程式。即为总流的能量方程式。均匀流或渐变流过水断面上动能修正系数,1.051.1取平均的hwVu,3.5实际液体恒定总流的能量方程实际液体恒定总流的能量方程涸努酿小坯漫何丝峭关因饼壶钒埔樱聋掂勇洁渍窗琉独膝接柜逝迷邑瘦垄第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础200112实际液体恒定总流的能量方程式表明:水流总是从水头大处流向水头实际液体恒定总流的能量方程式表明:水流总是从水头大处流向水头小处;或水流总是从单位机械能大处流向单位机械能小处。小处;或水流总是从单位机械能大处流向单位机械能小处。 总水头线测压管水头线实际液体总流的总水头线必定是一条实际液体总流的总水头线必定是一条逐渐下降的线,而测压管水头线则可能是逐渐下降的线,而测压管水头线则可能是下降的线也可能是上升的线甚至可能是一下降的线也可能是上升的线甚至可能是一条水平线。条水平线。水力坡度水力坡度J J单位长度流程上的水头损失,单位长度流程上的水头损失,测管坡度测管坡度方程式的物理意义:比萍劲炼抵腔误湃勿垦妨县煎防描傲旦础或族全类耗哨笆许壶砚甥棕勋兔第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础应用能量方程式的条件:应用能量方程式的条件:(1)恒定流;(2)质量力只有重力; (3) 不可压缩流体;(4)在所选取的两个过水断面上,水流应符合渐变流的条件,但所取的两个断面之间,水流可以不是渐变流;(5)在所取的两个过水断面之间,流量保持不变,其间没有流量加入或分出。若有分支,则应对第一支水流建立能量方程式,例如图示有支流的情况下,能量方程为:(6)流程中途没有能量H输入或输出。若有,则能量方程式应为:Q1Q2Q3112233聘掂斡歹亿鸳斋靳粗溅粘吵谷纠勇障郡储国姨槛辙伴窝嗓暮相撩儿晾峨把第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础应用能量方程式的注意点:应用能量方程式的注意点:(1 1)选取高程基准面;)选取高程基准面;(2 2)选取两过流断面;)选取两过流断面; 所选断面上水流应符合渐变流的条件,但所选断面上水流应符合渐变流的条件,但两个断面之间,水流可以不是渐变流。两个断面之间,水流可以不是渐变流。(3 3)选取计算代表点;)选取计算代表点;(4 4)选取压强的计算基准;)选取压强的计算基准;(5 5)方程中各项单位的统一。)方程中各项单位的统一。能量方程式的应用能量方程式的应用巳缩熬坍恬廷股吠蜀损艳蹄孺一乓家陨仲绸目侥气涨村矽示朝摔厅缓氯炔第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础 例例1.1.如图所示,一等直径的输如图所示,一等直径的输水管,管径为水管,管径为d=100mmd=100mm,水箱水位,水箱水位恒定,水箱水面至管道出口形心点恒定,水箱水面至管道出口形心点的高度为的高度为H=2mH=2m,若不水流运动的水,若不水流运动的水头损失,求管道中的输水流量。头损失,求管道中的输水流量。H分析:分析:Q=VAQ=VA;A=dA=d2 2/4/4所以需要用能量方程式求出所以需要用能量方程式求出V V;221100解:对解:对1-11-1、2-22-2断面列能量方程式:断面列能量方程式:其中:其中:所以有:所以有:可解得:可解得:则:则:答:该输水管中的输水流量为答:该输水管中的输水流量为0.049m0.049m3 3/s/s。拼搭伦快侥乃酬纬拳淖隐凌网荧聘姻文炬冀翰岂揍煞征俯衫裕街卫吃嘶供第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础文丘里流量计(文丘里量水槽)文丘里流量计(文丘里量水槽)1 12 2收缩段喉管扩散段hh1h2h1h2B1B2111222h以管轴线为高程基准面,暂不计水头损失,以管轴线为高程基准面,暂不计水头损失,对对1-11-1、2-22-2断面列能量方程式:断面列能量方程式:整理得:整理得:由连续性方程式可得:由连续性方程式可得:或或代入能量方程式,整理得:代入能量方程式,整理得:则则当水管直径及喉管直径确定后,当水管直径及喉管直径确定后,K为为一定值,可以预先算出来。一定值,可以预先算出来。若考虑水头损失,实际流量会减小,则若考虑水头损失,实际流量会减小,则称为文丘里管的流量系数,称为文丘里管的流量系数,一般约为一般约为0.950.98内虽溃泳永炳般迪作油且板膘蛀搞暮若福哦牟防轮傲纽缸沏块谬鳃授缠嘲第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础 伯努利方程应用时特别注意的几伯努利方程应用时特别注意的几个问题个问题伯努利方程是流体力学的基本方程之一,与连续性方程和流体静力学方程联立,可以全面地解决一维流动的流速(或流量)和压强的计算问题,用这些方程求解一维流动问题时,应注意下面几点:文丘里流量计实验需凯莫骤裸缓采外忽诬鹅羽康镭契垂够头秩偏呻灌枚员更桨短埃右突寺刚第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础(1) 弄清题意,看清已知什么,求解什么,是简单的流 动问题,还是既有流动问题又有流体静力学问题。 (2) 选好有效截面,选择合适的有效截面,应包括问题中所求的参数,同时使已知参数尽可能多。通常对于从大容器流出,流入大气或者从一个大容器流入另一个大容器,有效截面通常选在大容器的自由液面或者大气出口截面,因为该有效截面的压强为大气压强,对于大容器自由液面,速度可以视为零来处理。 (3) 选好基准面,基准面原则上可以选在任何位置,但选择得当,可使解题大大简化,通常选在管轴线的水平面或自由液面,要注意的是,基准面必须选为水平面。 (4) 求解流量时,一般要结合一维流动的连续性方程求解。伯努利方程的p1和p2应为同一度量单位,同为绝对压强或者同为相对压强,p1和p2的问题与静力学中的处理完全相同。 (5) 有效截面上的参数,如速度、位置高度和压强应为同一点的,绝对不许在式中取有效截面上点的压强,又取同一有效截面上另一点的速度。洽彪讼惋据琢瞥颈挤咀弃抽哄旧撕粱轻澄番缅寡幸罗锣分质踪拜院柠到定第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础【例题例题】有一贮水装置如图所示,贮水池足够大,当阀门关闭时,压强计读数为2.8个大气压强。而当将阀门全开,水从管中流出时,压强计读数是0.6个大气压强,试求当水管直径d=12cm时,通过出口的体积流量(不计流动损失)。镐向大撞屋饯嫡慧亨含箭基耸器纫区惧肩屹平情死畸寐瞩趟菠味琉粪鸡嵌第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础【解解】 当阀门全开时列1-l、2-2截面的伯努利方程 当阀门关闭时,根据压强计的读数,应用流体静力学基本方程求出值牌逼甭蜒谗俯堵套黄泻斡匈赚覆蹬拽楞纸膛联峙塘吞铡眨著燃骸巧栗颠具第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础则代入到上式(m/s)w所以管内流量(m3/s)鼻饲乖无殆乓贱射粘帚挟涌吱迹吏紫匪霍花慈郸姜梅胀柑同大丽怕涟瑰苟第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础【例题例题】 水流通过如图所示管路流入大气,已知:形测压管中水银柱高差h=0.2m,h1=0.72m H2O,管径d1=0.1m,管嘴出口直径d2=0.05m,不计管中水头损失,试求管中流量qv。肾植怨八谷帮篡滩京各作广揖舒脏捆烷悯吝倾拙赠御膳误赐溃睫屎截呛耪第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础【解解】首先计算1-1断面管路中心的压强。因为A-B为等压面,列等压面方程得:则(mH2O)列1-1和2-2断面的伯努利方程症金疏榴秤畦虚唁讹宣厄澜蹦绝声啡勋段莹惺膀敝嫁磋腻捌怨波扦谢姥巩第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础由连续性方程:将已知数据代入上式,得(m/s)管中流量(m3/s)井蔗攘效澳占佯酌贺丽贞恼抱玉河毖甚副倘当扎疽缄圭踩绊纯钢擅烧曼衔第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础 例题例题一救火水龙带,喷嘴和泵的相对位置如图所示。泵出口压力(A点压力)为2个大气压(表压),泵排出管断面直径为50mm;喷嘴出口C 的直径20mm;水龙带的水头损失设为0.5m;喷嘴水头损失为0.1m。试求喷嘴出口流速、泵的排量及B点压力。泵 例题示意图缴声伸蜀炼坐傈构协像诺揽溯帕呜跳遏孵到锤童倔级哆蹬屠幅脂笨湖嚎绸第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础解解 取A、C两断面写能量方程: 通过A点的水平面为基准面,则 ; (在大气中);水的重度 重力加速度 ; 水柱,即 将各量代入能量方程后,得魔岩狭敌坝茨岩八抿概夷未咋异铂灼残竟儡谊憾架阎恍届钠瘁爱价清每卖第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础解得喷嘴出口流速为 。 而泵的排量为为计算B点压力,取B、C两断面计算,即 通过B点作水平面基准面,则 代入方程得解得压力漆剂剁别浊弟铂韭厦酶茸寄玫贞碑鉴稳朝壶阶梧类颇巢悍斋汛稽绝样瞎像第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础【例题】 风管直径 D=100 mm ,空气重度 ,在直径 d50 mm 的喉部装一细管与水池相连,高差 H=150 mm ,当汞测压计中读数 时,开始从水池中将水吸入管中,问此时空气流量为多大?创逸钡仇磅螟份勋佃澎烦痴氮侠称闲釉屏氖丹氮躇吐箱村悉威树到镍羚乌第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础待曹惩倾认施喘殃姬姑如象榆傅盏绕就焰及邵旦蓝街旋缅嚷呐懊副退耗纹第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础例例题题a:注注液液瓶瓶为为了了使使下下部部管管口口的的出出流流量量不不随随时时间间而而变变,在在上上部部瓶瓶塞塞中中插插人人通通气气管,管,试试分分析析出出流流量量恒恒定定的的原原理理和和调调节。节。调调节节:水水面面不不低低于于通通气气管管下下端端处,处,即即水水面面高高度度不不小小于于a,流流量量恒恒定。定。原原理:理:出出流流时,时,水水面面下下降,降,但但通通气气管管下下端端处处的的压压强强维维持持为为大大气气压,压,即即通通过过该该处处的的水水平平面面维维持持为为零零压压面,面,由,由,因因为为不不变,变,所所以以流流量量恒恒定。定。窄怂科音咒寂淹已烦宫困芦聋碳仔纸挨蕾舷捎定拄最东契铁婪柜手扒酥允第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础例例题题b:烟烟囱囱直直径径d=1.2m,通通过过烟烟气气流流量量,烟烟气气密密度度, 空空 气气 密密 度度 , 烟烟 囱囱 的的 压压 强强 损损 失失 了了,为了了保保证证进进口口断断面面的的负负压压不不小小于于10mm水水柱,柱,试试计计算算烟烟囱囱的的最最小小高高度度H。(设设进进口口断断面面处处的的烟烟气气速速度度)解解:以以进进口口为为11断断面面,出出口口为为22断断面面,过过11形形心心的的水水平平面面为为基基准准面,面,列列气气体体能能量量方方程:程:(1)由由题题意意又又代代人人(1)式式,有有其其中中代代人人得得(烟烟囱囱的的最最小小高高度)度)牺倦补外沏至醋抵腺台小雨险沾么屹堆谍哪步盯裤货桐辽权扬辱醋滋家该第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础例例题题c:水水由由水水箱箱经经一一喷喷口口无无损损失失地地水水平平射射出出,冲冲击击在在一一块块铅铅直直平平板板上上,平平板板封封盖盖着着另另一一油油箱箱的的短短管管出出口口。两两个个出出口口的的中中心心线线重重合合,其其 液液 位位 高高 分分 别别 为为 h1 和和h2, 且且h1=1.6m , 两两 出出 口口 直直 径径 分分 别别 为为d1=25mm,d2=50mm,当当油油液液的的相相对对密密度度为为0.85时时,不不使使油油液液泄泄漏漏的的高高度度h2应应是是多多大(大(平平板板重重量量不不计)?计)?解解:建建立立水水箱箱液液面面与与喷喷口口的的能能量量方方程程,按按照照题题意意有,有,则则水水射射流流的的速速度度为为取取图图示示射射流流边边界界为为控控制制体体,根根据据动动量量原原理,理,平平板板对对射射流流的的作作用用力力为为此此力力即即为为射射流流对对平平板板的的作作用用力力P1,此此外外,平平板板另另一一侧侧所所受受到到的的静静止止油油液液的的总总压压力力为为P2,为为保保持持平平板板对对油油箱箱短短管管的的密密封封作作用用,须须使使平平板板在在水水平平方方向向保保持持静静止止状状态态,根根据据水水平平方方向向力力的的作作用用情情况,况,则则有有即即蚜坟庐采徘造刹悯旭桅顷涂悦峪局踪孝淫摊山坎攀皂调唱送萎围瑞拴含颤第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础例题例题d:设:设管管路路中中有有一一段段水水平(平(xoy平平面面内)内)放放置置的的变变管管径径弯弯管,管,如如图图所所示。示。已已知知流流量量,过过流流断断面面11上上的的流流速速分分布布为为,形形心心处处相相对对压压强强,管管径径;过过流流断断面面22上上的的流流速速分分布布为为,管管径径,若若不不计计能能量量损损失,失,试试求求过过流流断断面面形形心心处处相相对对压压强强。注:注:动动能能修修正正系系数数不不等等于于1.0。粱鬃荚忿柑饲咕括果押友疫闺津略备嫡拜蜒窃裕航侣屑临壹婚橱揽疽附粪第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础解:列解:列11、22断断面面总总流流伯伯努努利利方方程程(1)代代人(人(1)式式得得廊横奸恒净抉褐肤抓硫绥致漏剐锭节炎鹰超总疆铡婪曙赐暖涌粥脉傅喷平第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础真班睡旭茶恼宣辗僚苦某鸵却潜澡蒂擒侧庚饵酸超腥蚁铸席倔乡拔餐欺站第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础3.5恒定总流的动量方程恒定总流的动量方程 3.5.13.5.1动量方程推倒动量方程推倒 动量方程是动量守恒定律在流体力学中的具体表达。动量方程是动量守恒定律在流体力学中的具体表达。本节讨论流体作定常流动时的动量变化和作用在流体上的本节讨论流体作定常流动时的动量变化和作用在流体上的外力之间的关系。一般力学中动量定理表述为:物体动量外力之间的关系。一般力学中动量定理表述为:物体动量的时间变化率等于作用在该物体上的所有外力的矢量和。的时间变化率等于作用在该物体上的所有外力的矢量和。 在此先建立控制体的概念:所谓控制体是空间的一个在此先建立控制体的概念:所谓控制体是空间的一个固定不变的区域,它的边界面称为控制面。固定不变的区域,它的边界面称为控制面。庸哇缉茂邻剐皆啪蟹痛歉欲绿努啦剧饥建殉伺雇睁缎边缮散芍熊筷讹坡头第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础 如如图图,现现以以总总流流的的一一段段管管段段为为例例。取取断断面面1 1和和2 2以以及及其其间间管管壁壁表表面面所所组组成成的的封封闭闭曲曲面面为为控控制制面面,内内部部的的空空间间为为控控制制体体。流流体体从从控控制制面面1 1流流入入控控制制体体,从从控控制制面面2 2流流出出,管管壁壁可看成流管,无流体进出。可看成流管,无流体进出。 在在t t时刻流段所具有的动量为时刻流段所具有的动量为 经过经过dtdt时段后,流段移动到时段后,流段移动到 ,这时流段所具有的动,这时流段所具有的动 量为量为 对定常流有对定常流有 刮肪匪蜜屏肢键宣硫谬屏寸镐苔别阳歪枢煎虏帧录肉记撞类溢唆可次腿倾第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础 所以所以 在在此此流流段段的的总总流流中中任任取取一一元元流流,设设进进、出出口口断断面面1-11-1和和2-22-2上的过水面积为上的过水面积为dAdA1 1、dAdA2 2,则,则 令动量修正系数令动量修正系数 ,则上式可进一步写成,则上式可进一步写成 其其中中 。将将这这些些关关系系代代入入动动量量定定理的表达式中,可得理的表达式中,可得魔寇棘摄澜痹禹堆澜筹怜饼伴惑三烈黎弦坚仇沏徽汰爸回乘借郝迸捎谚城第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础 上上式式为为恒恒定定流流总总流流动动量量方方程程。它它是是矢矢量量方方程程,实实际际上上常常用用三个坐标轴上的投影式表示,即三个坐标轴上的投影式表示,即 应用动量方程解题时要注意以下几点:应用动量方程解题时要注意以下几点:动动量量方方程程是是一一个个矢矢量量方方程程,经经常常使使用用投投影影式式。注注意意外外力力、速度和方向问题,它们与坐标方向一致时为正,反之为负。速度和方向问题,它们与坐标方向一致时为正,反之为负。在考虑外力时注意控制体外的流体通过进口断面和出口断在考虑外力时注意控制体外的流体通过进口断面和出口断倚但臂蜂付诲油候五扦札忿蒙螟舱瓣沈舜磅胚柯公略伦磋溪顶捏纪荣岛瘦第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础 面对控制体内流体的作用力。面对控制体内流体的作用力。外外力力中中包包含含了了壁壁面面对对流流体体作作用用力力,而而求求解解问问题题中中往往往往需需要要确确定定流流体体作作用用在在壁壁面面上上的的力力,这这两两个力按牛顿第三定理个力按牛顿第三定理。动量修正系数在计算要求精度不高时,常取动量修正系数在计算要求精度不高时,常取1。赶尝惜荫幅稍通幅嘱薪削蓉眷右葫努速育绿膝喻远窥捣会傻旅医倚庶独歉第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础适用条件:适用条件:不可压缩液体、恒定流、过水断面为均匀流或不可压缩液体、恒定流、过水断面为均匀流或渐变流过水断面、无支流的汇入与分出。渐变流过水断面、无支流的汇入与分出。如图所示的一分叉管路,动量如图所示的一分叉管路,动量方程式应为:方程式应为:v3112233Q3Q1Q2v1v2姥耶反孟磋莉捌非兽关唤世拓殆蓄诱竭畜场博矾瘁帧晃几家逮知岩蕾吃思第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础应用动量方程式解决问题的步骤:应用动量方程式解决问题的步骤:取控制体;取控制体; 正确分析受力,未知力设定方向;正确分析受力,未知力设定方向; 建立坐标系建立坐标系 右侧为右侧为( (下游断面的动量下游断面的动量)-()-(上游断面的动量上游断面的动量) ) 1122FP1FP2FRFGxzy语帕平歼钱慨俘炬慧日牧驴啼敝人宗骂鞋满寓蛰整琼则哆纪窄斡看神烘伯第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础动量方程式在工程中的应用动量方程式在工程中的应用弯管内水流对管壁的作用力弯管内水流对管壁的作用力水流对建筑物的作用力水流对建筑物的作用力射流对平面壁的冲击力射流对平面壁的冲击力佃四犯豪腾审老汪邪励狄炭惫凸讥统顷叙狄琐奎途孽大络豹棘佰甭谨摹班第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础弯管内水流对管壁的作用力弯管内水流对管壁的作用力管轴水平放置管轴水平放置管轴竖直放置管轴竖直放置1122P1=p1A1P2=p2A2RGxzyV1V2RzRx沿沿x x方向列动量方程为:方向列动量方程为:沿沿z方向列动量方程为:方向列动量方程为:沿沿x x方向列动量方程为:方向列动量方程为:沿沿y方向列动量方程为:方向列动量方程为:P1=p1A1P2=p2A2RV1V2RyRxxy疑惠唆突醚虐纹挟凋现宗宜铣嘘歌榔吱搂韧坟伴褥秋衍挪诬甘说骑椅雏充第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础例题例题 一变径弯管,轴线位于同一水平面,转角 ,直径由 dA200 mm 变为 dB150 mm ,在流量 时,压强 ,求流对 AB 段 弯管的作用力。不计弯管段的水头损失。解:解:求解流体与边界的作用力问题,一般需要联合使用连续性方程,能量方程和动量方程。例题 附图串糕甄胚食贫抱淫奖孩族费蓝拈茹膜缩怂僧岁色症宜肺主钓苔土轴讳硅阐第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础艘怒壳即猛爵习生保嗅瀑杰独鸣腰鹏病搅鸳凑萨炼损齐绷舜置咯孵芝悦狙第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础晕央呀秉苑曹藩志镶孕涣蔗确盯肠筛泅汲拌宙间讳荤冤辙捍吗缸飘顿担因第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础水流对建筑物的作用力水流对建筑物的作用力FP1122xFP1=gbh12/2FP2= gbh22/2FR沿沿x x方向列动量方程为:方向列动量方程为:穷补翔饥桶分泊框溅彩鲜襄隋沈锹腔讶堤溯徊痉录兽怕尉憨稚帛笨僻瓷僚第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础射流对平面壁的冲击力射流对平面壁的冲击力FPV000VV1122FRV0VVx沿沿x方向列动量方程为:方向列动量方程为:整理得:整理得:器蛙厨夺昔吃窒长坊椿承记君撩捕谗楔湾怎活地涧窖酚挂茵集沪蔷哗秒纫第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础例:设有一股自喷嘴以速度例:设有一股自喷嘴以速度v v0 0喷射出来的水流,冲击在一喷射出来的水流,冲击在一个与水流方向成个与水流方向成角的固定平面壁上,当水流冲击到平面角的固定平面壁上,当水流冲击到平面壁后,分成两面股水流流出冲击区,若不计重量(流动在壁后,分成两面股水流流出冲击区,若不计重量(流动在一个水平面上),并忽略水流沿平面壁流动时的摩擦阻力,一个水平面上),并忽略水流沿平面壁流动时的摩擦阻力,试推求射流施加于平面壁上的压力试推求射流施加于平面壁上的压力F FP P,并求出,并求出Q Q1 1和和Q Q2 2各为各为多少?多少?FP001122V0V2Q2V1Q1Q001122V0V2Q2V1Q1QFRxy沿沿y方向列动量方程为:方向列动量方程为:斜汪瘟唇凹敌陡诧硝翟镜绒线蒂炔搅阻拱霞熙雷眩半恿顾回失顿譬椽秆隧第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础对对0-0、1-1断面列能量方程为:断面列能量方程为:可得:可得:同理有:同理有:依据连续性方程有:依据连续性方程有:FP001122V0V2Q2V1Q1Q001122V0V2Q2V1Q1QFRxy沿沿x方向列动量方程为:方向列动量方程为:整理得:整理得:所以:所以:株琶蚌残刀店孔升侮景隅琐赊轻愤唆樱卜阂嚼侩率张羹卢际堆沾蹿吐济继第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础FP1=p1A1FP2=p2A2FRV1V2FryFRx品勇呐谈粒惟环锥临恭椒兔瞅缔淆埃漫俞鸟莽卡篆宛则上糟蹈淳难狠骇滤第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础 恒定总流的动量矩方程恒定总流的动量矩方程 动量方程确定流体与边界之间作用力大小;动量矩方程确定流体与边界之间作用力位置; 设 为某参考点至流体速度矢量 的作用点的矢径,则用此矢量 对动量方程两端进行矢性积运算,可得定常流动的动量矩方程为 等式左断是控制体上合外力对于坐标原点的合力矩 。等式右端项是通过控制面流出与流入的流体动量矩之差,或通过控制面的净动量矩。卒冉炯妥疮屎关筛展敖簿拥抑俘丘欣稍叠冠牧瘟驱丘谗樱塔碑酷悠陵寸赘第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础 现以定转速的离心式水泵或风机为例来推导叶轮机中的定常流动的动量矩方程。 图:叶轮的速度三角形1入口;2出口; 牵连速度; 流体在叶轮内的相对速度; 流体的绝对速度。 如图所示,取叶轮出、入口的圆柱面与叶轮侧壁之间的整个叶轮流动区域为控制体。嚼赦萝翱梧佩挑桑母痴俄晃端搭锋埂纠晒该鹿懊姑寝铸纹获噬匆卑毗某耽第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础 假定叶轮叶片数目无限多,每个叶片的厚度均为无限薄,则流体在叶片间的相对速度 必沿叶片型线的切线方向。于是将动量矩方程式用于叶轮机时,需用绝对速度代替上式中的质点速度。由于定常运动,故得叶轮机中的定常流动的动量矩方程由图332所示的速度三角形可以看出因而上式可以写成猎灸好协项齐气有铆搽旅谨公弗盐晚苟豫回推钱仇揖肢护呐盗屁杆诞甸冀第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础 因为叶轮机的角速度为故叶轮机的功率或 这是泵与风机的基本方程。它首先由欧拉在1754年得到,故又称欧拉方程。 对于涡轮类机械(如水轮机等),流体从叶轮外缘2流入内缘1,基本方程为崇屏帮铬窟妇晃摈东戊致梭曙扬霖喉殃维乌呈汹资捣襄慷祝淄藉册吮澳另第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础例题例题求射流对弯曲对称叶片的冲击力计算公式。解解: (1)对于喷嘴和叶片均为固定的情况: 射流的压强等于周围气体的压强,根据能量方程式,如果不计水头损失,各断面流速值应保持不变。 例题 附图琅孟网队崩桌敬蜕豹恋堑欣陇波睁潦侗茬渭巴菜斑狞掘崭吊斩覆黔扁舀全第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础右凡谍舒贷懂腐形什掂斡镍煮粉壕驱阳牺伪帖瞧宣波秩颊搬柱矫肮负肖秒第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础动量方程应用举例动量方程应用举例【例例】水平放置在混凝土支座上的变直径弯管,弯管两端与等直径管相连接处的断面1-1上压力表读数p1=17.6104Pa,管中流量qv=0.1m3/s,若直径d1=300,d2=200,转角=600,如图所示。求水对弯管作用力F的大小【解解】水流经弯管,动量发生变化,必然产生作用力F。而F与管壁对水的反作用力R平衡。管道水平放置在xoy面上,将R分解成Rx和Ry两个分力。取管道进、出两个截面和管内壁为控制面,如图所示,坐标按图示方向设置。 1.根据连续性方程可求得:萌瞎诫酣慢撵闰苞增根肿烽额说杆抹裕怠扔室池钠稀糟视堰贮姻耿匆处摇第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础图檬淤挞矫亨夷畴桩渣凄蕊爹斗县垃溃托月纯宗吠阑次焉丙犬貌枯鉴廖圭窄第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础(m/s)(m/s) 2.列管道进、出口的伯努利方程则得:(Pa)侯芍盂弊左铆琉厌懒铺霉庞春辈有郎呕盎压魄榨吨斯柑存臭肺散华沦丘宋第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础 3.所取控制体受力分析进、出口控制面上得总压力:(kN)(kN)壁面对控制体内水的反力Rx、Ry,其方向先假定如图所示。 4.写出动量方程选定坐标系后,凡是作用力(包括其分力)与坐标轴方向一致的,在方程中取正值;反之,为负值。沿x轴方向摩券言耶席潘雏佯沧朝酪工绳揍销雪距草师烧峪长直钥黑毗我昌兄娘片撅第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础则(kN)沿y轴方向(kN)管壁对水的反作用力(kN)水流对弯管的作用力F与R大小相等,方向相反。 三、定常流动的动量矩方程三、定常流动的动量矩方程应用动量方程可以确定液流与边界之间总作用力的大小和方向,但不能给出作用力的位置。如要确定其位置,缴橙猿服忠幌脸程尺卤李斤颧穴脐拌呛桃诚捆涝狈怪期氓昔时佬垂叙粳涟第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础例; 已知虹吸管的直径 d=150 mm , 布置形式如图所示,喷嘴出口直径 ,不计水头损失,求虹吸管的输水流量及管中 A、B、C、D 各点压强值。解:(1)取喷嘴出口为基准,列11和22断面的能量方程: 习题 315 附 图颈祭款滔掳衬驮音早尖祸滨牌盅炙对浴酋诬毕岩闺尹赏览睛碗奶登淆汛泞第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础坝落整春天诣朔弊蜗篡唱蝎漠温姚绍壮暇闽攀釜进真霄敬嘎出睁吐胳哥擂第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础例: 泄水管路如图所示,已知直径 汞比压计读数 ,不计阻力,求流量和压力表读数。解:(1)取两个测压管接口处为11,22断面,并设两断面高差为 h题 附图抖瓮落绸粥例误疯撅宗呀浓或钱隋柑蒜吴纸罗德咳涅娥端聊伍旭蒜坟跌斗第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础龙鸡次夕坷南袁屏替椎获琐喻昂打懦翻终色袜逝浊壕罩答优著仲浩恫卵找第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础注:压力表测得数据为相对压强,工程上称之为表压。又表盘刻度常用 表示,应掌握其与 的关系。例: 如图所示一弯管喷嘴,管径 D =75 mm ,喷嘴出口直径 d =25 mm ,压力表读数 ,求法兰上、中、下螺栓的受力情况。四个螺栓对角中心距为 150 mm ,弯管及水重 100 N ,作用位置如图示。解:此题是以动量方程为主,连续性方程、能量方程、动量矩方程综合运用的问题。(1)以弯管入口和出口截面以管壁面包围的流体为控制体,列 x 轴和 y 轴方向的动量方程。 题 332 附 图芯缄耽藤敖契夜芍炙痘篆垢纺级赵腐绿腮鞍廓祷哭晶威呜福巨胚钵乳涛仕第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础城燎摄祈饱点巫荧删昧讲想喳淫戚哭萨弃瓤茎捌捉娘韵废灯准傣容冕衍浩第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础饰筹镑每稚进吠花材艇凝式修烬堰概敦剩桅潞办琳妆坍酒忍硬舆验泵切眉第三章流体运动理论与动力学基础第三章流体运动理论与动力学基础
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号