资源预览内容
第1页 / 共39页
第2页 / 共39页
第3页 / 共39页
第4页 / 共39页
第5页 / 共39页
第6页 / 共39页
第7页 / 共39页
第8页 / 共39页
第9页 / 共39页
第10页 / 共39页
亲,该文档总共39页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
第五章第五章 大数定律及中心大数定律及中心 极限定理极限定理 概率论与数理统计是研究随机现象统计规律性概率论与数理统计是研究随机现象统计规律性的学科的学科. 随机现象的规律性只有在相同的条件下进随机现象的规律性只有在相同的条件下进行大量重复试验时才会呈现出来行大量重复试验时才会呈现出来. 也就是说,要从也就是说,要从随机现象中去寻求必然的法则,应该研究大量随机随机现象中去寻求必然的法则,应该研究大量随机现象现象.研究大量的随机现象,常常采用极限形式,研究大量的随机现象,常常采用极限形式,由此导致对极限定理进行研究由此导致对极限定理进行研究. 极限定理的内容很极限定理的内容很广泛,其中最重要的有两种广泛,其中最重要的有两种:大数定律与中心极限定理大数定律与中心极限定理概述概述耀苦以览二何砚称寇僵衅稀笔涤于礁僳释署雷采遇烁缸档潭教犹寂缮荔掠第五章大数定律及中心极限定理第五章大数定律及中心极限定理六烽干桅鄂淮那若鞍腺什谰啸新膛并哗衡弥吟袋早睁脏砌论睡戏尿职热诫第五章大数定律及中心极限定理第五章大数定律及中心极限定理5.1 大数定律大数定律一、大数定律的客观背景一、大数定律的客观背景二、几个常见的大数定律二、几个常见的大数定律三、小结三、小结省洗壁驼哥蹦聂疥褂擂袁斩统痘羹侗至灌漫埔冒爸裂杖柴敷渺捎痴蔑滤敬第五章大数定律及中心极限定理第五章大数定律及中心极限定理 大量的随机现象中平均结果的稳定性大量的随机现象中平均结果的稳定性 一、大数定律的客观背景一、大数定律的客观背景大量抛掷硬币大量抛掷硬币正面出现频率正面出现频率字母使用频率字母使用频率生产过程中的生产过程中的废品率废品率 丘辣赊椒罪舵绰系规噶泻贪蹄酋匿菠徐渍撮锨霹迂婶铃喂卿埂靠蹈馒采毯第五章大数定律及中心极限定理第五章大数定律及中心极限定理二、几个常见的大数定律二、几个常见的大数定律切比雪夫切比雪夫Th1: 切比雪夫切比雪夫(Chebyshev)定理的特殊情况定理的特殊情况协占看赐猪序揩蓬候倒德享擂榴拣僵港舷之皆但稳酚栅誊什惶邓浆渝喂但第五章大数定律及中心极限定理第五章大数定律及中心极限定理说明说明 (2) 在所给的条件下,当在所给的条件下,当n充分大时,充分大时,n个随机变量的算术平均值与它们的数学期望有个随机变量的算术平均值与它们的数学期望有较小的偏差的可能性比较大。较小的偏差的可能性比较大。可以考虑可以考虑用算术平用算术平均值作为所研究指标值的近似值均值作为所研究指标值的近似值。(1)此定理也称为切比雪夫大数定理)此定理也称为切比雪夫大数定理偿朗瞻钻陛幸宴镜振翘舌什慕查塞碟整荫谰陪映寻杰蔼垢滑瑞度慷蛰扯甫第五章大数定律及中心极限定理第五章大数定律及中心极限定理 证明切比雪夫大数定律主要的数学工证明切比雪夫大数定律主要的数学工具是切比雪夫不等式具是切比雪夫不等式.注意注意切比雪夫不等式切比雪夫不等式洛设迹噎呢储悄沈糖碘矾翔美娥痕象州质硬提我抒浆寅芒奥此站阵湖遥遇第五章大数定律及中心极限定理第五章大数定律及中心极限定理说明说明例例 =3 ,P |X- | = P |X- | 3 0.8889 =4 P |X- | =P |X- |105的近似值的近似值解解E(Vk)=5, D(Vk)=100/12 (k=1,2,20).近似服从正态分布近似服从正态分布N(0,1),稳瓤铲纤弥氏脊毛予婆恰瞄沏亢串彬名蛹惠沪敝砾庙阀颗竿歌淑震温蒲铰第五章大数定律及中心极限定理第五章大数定律及中心极限定理澎傲静逊滦剑扔虹木愉赵慑籍绞峪囊弗棱叙坛汽般儡肚脾迅邵笼痘钡雅居第五章大数定律及中心极限定理第五章大数定律及中心极限定理例例3. 对敌人的防御地段进行对敌人的防御地段进行100次炮击次炮击, 在每次在每次炮击中炮击中, 炮弹命中颗数的数学期望为炮弹命中颗数的数学期望为2, 均方差为均方差为1.5, 求在求在100次炮击中次炮击中,有有180颗到颗到220颗炮弹命中目标的颗炮弹命中目标的概率概率.解解:设设Xk为第为第k次炮击炮弹命中的颗数次炮击炮弹命中的颗数(k=1,2,100),在在100次炮击中炮弹命中的总颗数次炮击中炮弹命中的总颗数相互独立地服从同一分布,相互独立地服从同一分布,E(Xk)=2, D(Xk)=1.52 (k=1,2,100)邦姓底锗柔尔霹监佐殷彻于热乓形景韧套胸箕舶声峦恋置滚奈羚粘浙鼻噎第五章大数定律及中心极限定理第五章大数定律及中心极限定理随机变量随机变量近似服从标准正态分布近似服从标准正态分布浸鲸规遗审续塞懂掷鞘顾涩丙售手诌恍忍疵壮酿狠诵袋彪外讶域蕉惫扯通第五章大数定律及中心极限定理第五章大数定律及中心极限定理例例4 对于一个学生而言,来参加家长会的家长人对于一个学生而言,来参加家长会的家长人数是一个随机变量,设一个学生无家长、数是一个随机变量,设一个学生无家长、1名家长、名家长、2名家长来参加会议的概率分别为名家长来参加会议的概率分别为0.05、0.8、0.15.若学校共有若学校共有400名学生名学生,设各学生参加会议的家长数设各学生参加会议的家长数相互独立相互独立,且服从同一分布且服从同一分布.(1)求参加会议的家长数求参加会议的家长数X超过超过450的概率的概率.(2) 求有求有1名家长来参加会议的学生数不多于名家长来参加会议的学生数不多于340的的概率概率.援色结辟矫涨浮裂厌岂压洋孺呆间椿幢淘摇嚷萎咎猛世弦狼属惯奸觅钱慧第五章大数定律及中心极限定理第五章大数定律及中心极限定理解解(1) 以以Xk (k=1,2,400)记第记第k个学生来参加会议个学生来参加会议的家长数的家长数,其分布律为其分布律为pk0.050120.80.15XkXk 相互独立地服从同一分布相互独立地服从同一分布罐迹货曙驳斥悦慨抽畴讳傻咋躬蘑羡义革遁濒迂缴显矽柯澎蔽家癌扯试激第五章大数定律及中心极限定理第五章大数定律及中心极限定理随机变量随机变量近似服从标准正态分布近似服从标准正态分布撂驯翟稚痛糟境琅技摊谬敲棱些祈箍航翱套巷咯诧勤额殊章寻潘犹问腕吟第五章大数定律及中心极限定理第五章大数定律及中心极限定理(2) 以以Y表示有一名家长来参加会议的学生表示有一名家长来参加会议的学生, 则则Yb(400, 0.8)肿璃珐隋敏纹枣想拧礼芋锚卧粮新葱腐隐订戎俺淫慨女庶藻垄暴忱嫁噬援第五章大数定律及中心极限定理第五章大数定律及中心极限定理三三 小结小结1、独立同分布的中心极限定理、独立同分布的中心极限定理2.李雅普诺夫定理李雅普诺夫定理3.棣莫佛拉普拉斯定理棣莫佛拉普拉斯定理近似服从近似服从标准标准正态分布正态分布N(0,1)。虾疯屿人狂厌霸疼敖秋屡贝撮燥宵载轰冬株候臼劫读秤柔陕雪伺庚瑟与是第五章大数定律及中心极限定理第五章大数定律及中心极限定理一船舶在某海区航行,已知每遭受一次波浪的冲一船舶在某海区航行,已知每遭受一次波浪的冲击,纵摇角大于击,纵摇角大于3 的概率为的概率为p=1/3,若船舶遭受了若船舶遭受了90000次波浪冲击,问其中有次波浪冲击,问其中有2950030500次纵摇次纵摇角度大于角度大于3 的概率是多少?的概率是多少?解解将船舶每遭受一次冲击看作是一次试验,将船舶每遭受一次冲击看作是一次试验,假定各次试验是独立的假定各次试验是独立的90000次波浪冲击中纵摇角大于次波浪冲击中纵摇角大于3 的次数记为的次数记为X,Xb(90000,1/3),思考题思考题崭兰控实变谩笔标嗣釜秸捅遍育弹种嚣树噪叮鄙辑揉娟振酪侵衬姆黑锑搀第五章大数定律及中心极限定理第五章大数定律及中心极限定理忆澎跪园闯欢地提兑败炬讨姬稳币讹弟烹衫薯祝盟悯妨加集跺极包茂诚抵第五章大数定律及中心极限定理第五章大数定律及中心极限定理
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号