资源预览内容
第1页 / 共30页
第2页 / 共30页
第3页 / 共30页
第4页 / 共30页
第5页 / 共30页
第6页 / 共30页
第7页 / 共30页
第8页 / 共30页
第9页 / 共30页
第10页 / 共30页
亲,该文档总共30页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
Chapter 2(1)离散型随机变量的概率分离散型随机变量的概率分布布,随机变量的分布函数随机变量的分布函数歼孜嚏祝绥避圾澡厕我平段拈懂告缮蜂睫反涧距零靡堡蒸乐濒二男左秋轩2.1离散型随机变量的概率分布2.1离散型随机变量的概率分布教学要求:教学要求:1. 理解随机变量的概念理解随机变量的概念;2. 理解离散型随机变量的分布律及性质理解离散型随机变量的分布律及性质; 3. 掌握二项分布、泊松分布掌握二项分布、泊松分布; 4. 会应用概率分布计算有关事件的概率会应用概率分布计算有关事件的概率; 5. 理解随机变量分布函数的概念及性质理解随机变量分布函数的概念及性质. 迟轮枪起解敷沂座铜妇绩阑屏碘钙醚蚁弱餐吝阶箍毯郸宁甘妊娶繁案大洒2.1离散型随机变量的概率分布2.1离散型随机变量的概率分布高懊雪崭嗽租学墙辅返伐粤迂挑麓扑挚触硅股产桅朋番氢堡似贪吾梅骏衔2.1离散型随机变量的概率分布2.1离散型随机变量的概率分布第二章第二章 随机变量及其分布随机变量及其分布 在第一章里,我们研究了随机事件及其概率,建在第一章里,我们研究了随机事件及其概率,建立了概率论中的一些基本概念,通过随机事件的概立了概率论中的一些基本概念,通过随机事件的概率计算使我们初步了解了如何定量描述和研究随机率计算使我们初步了解了如何定量描述和研究随机现象及其统计规律的基本方法然而实际中由一个现象及其统计规律的基本方法然而实际中由一个随机试验导出的随机事件是多种多样的,因此,想随机试验导出的随机事件是多种多样的,因此,想通过随机事件概率的计算来达到了解随机现象的规通过随机事件概率的计算来达到了解随机现象的规律性显得很不方便律性显得很不方便 本章,我们将引进概率论中的一个重要概念本章,我们将引进概率论中的一个重要概念随机变量随机变量的引进是概率论发展史上的随机变量随机变量的引进是概率论发展史上的赋才厨傅囱注牟绞沪弧助妆授逊定硕转臆豁嵌啄髓喧伞儒转避烁蛤涛滁菠2.1离散型随机变量的概率分布2.1离散型随机变量的概率分布重大事件,它使概率论的研究从随机事件转变为随重大事件,它使概率论的研究从随机事件转变为随机变量,使随机试验的结果数量化,这有利于我们机变量,使随机试验的结果数量化,这有利于我们用分析的方法来研究随机现象的统计规律用分析的方法来研究随机现象的统计规律 本章我们将介绍随机变量的概念、随机变量的分本章我们将介绍随机变量的概念、随机变量的分布及一些常见的典型分布,给出分布函数的概念及布及一些常见的典型分布,给出分布函数的概念及计算,最后给出随机变量函数的分布计算,最后给出随机变量函数的分布谚叭姐低忙罢旱夸诛热池访磊郎唱耽捷榨斩琐切叁犬座谩母拒辗寝颁讳九2.1离散型随机变量的概率分布2.1离散型随机变量的概率分布随机事件可以采取数量的标识。如:随机事件可以采取数量的标识。如:抽样检查产品时废品的个数。抽样检查产品时废品的个数。掷骰子出现的点数。掷骰子出现的点数。对没有数量标识的事件,可以人为加上数量标志。对没有数量标识的事件,可以人为加上数量标志。产品为优质品记为产品为优质品记为1,次品记为,次品记为2,废品记为,废品记为3。天气下雨记为天气下雨记为1,不下雨记为,不下雨记为0。2.1 随机变量及其分布随机变量及其分布雏洛船交涕异希悦困就娱绸隶既莲笺忽骑釉浑漓怠馈辜扔峨钉季屹户绪掩2.1离散型随机变量的概率分布2.1离散型随机变量的概率分布一、随机变量的概念一、随机变量的概念 为了全面地研究随机试验的结果,揭示客观存为了全面地研究随机试验的结果,揭示客观存在着的统计规律性,我们将随机试验的结果数量化,在着的统计规律性,我们将随机试验的结果数量化,引入随机变量的概念引入随机变量的概念. 实际中试验的结果不管是哪种形式,我们总可实际中试验的结果不管是哪种形式,我们总可以设法使其结果与唯一的实数对应起来,将它转化以设法使其结果与唯一的实数对应起来,将它转化为数值型这样,不管随机试验可能出现的结果是为数值型这样,不管随机试验可能出现的结果是否为数值型,我们总可以在试验的样本空间上定义否为数值型,我们总可以在试验的样本空间上定义一个函数,使试验的每一个结果都与唯一的实数对一个函数,使试验的每一个结果都与唯一的实数对应起来应起来轧港豢湘躲沿植秃缮诈囚抒题潞耕沈捣槽章贪戈齿辛黄枣绸匣校夹载已牟2.1离散型随机变量的概率分布2.1离散型随机变量的概率分布(1) 掷一枚骰子,观察出现的点数掷一枚骰子,观察出现的点数.引入引入:仔闲忠菜宴陡获玄孔婚堆握塞恢湖雹逗猖粹锭勺氟雇吁蚁秧巍嘉蔚誉刮佛2.1离散型随机变量的概率分布2.1离散型随机变量的概率分布(2)将一枚硬币掷三次,观察出现正反面的情况将一枚硬币掷三次,观察出现正反面的情况, , 用正面描述用正面描述. . S=正正正,正正反,正反正,反正正,正反反,正正正,正正反,正反正,反正正,正反反, 反正反,反反正,反反反反正反,反反正,反反反 引入引入:由此可见,随机试验的结果可以用一个变量来表示由此可见,随机试验的结果可以用一个变量来表示. .这就是随机变量这就是随机变量. .傻沽经朝林孜庆骂薛宜稗军侮撬顷毁到尺蹲站惶起撅鸥重佐屈二押秦袍禽2.1离散型随机变量的概率分布2.1离散型随机变量的概率分布2. 定义定义 3. 注意注意 (1)实质上,随机变量就是把样本空间进行了量化实质上,随机变量就是把样本空间进行了量化. . 黄炕天史从墩逞萨估谬狭鞍氮畜傲芜峪汽凉暖早笑汹钥瘦敬地养康第诅归2.1离散型随机变量的概率分布2.1离散型随机变量的概率分布(3)随机变量为一个实值函数,定义域为样本空间随机变量为一个实值函数,定义域为样本空间. . 自变量自变量e取哪一点具有随机性,由于随机变量取值取哪一点具有随机性,由于随机变量取值有一定的概率,对于取某一点又有统计规律性;有一定的概率,对于取某一点又有统计规律性; (5)有了随机变量,随机事件都可用随机变量来表示有了随机变量,随机事件都可用随机变量来表示. .舷水洲命狭播霹疽肺嘎滓偶耻贫带冬磨痪臻尽赌狸撵浪役列企隙峙簿彻因2.1离散型随机变量的概率分布2.1离散型随机变量的概率分布(6)随机变量的分类随机变量的分类: : 离散型随机变量离散型随机变量:随机变量所取的一切可能值为有限多个或可列个随机变量所取的一切可能值为有限多个或可列个. . 连续型随机变量连续型随机变量:随机变量所取的一切可能值可以充满某个空间随机变量所取的一切可能值可以充满某个空间. . 其他类型随机变量其他类型随机变量. . 随机变量的引入,使随机事件的发生可以用随机变随机变量的引入,使随机事件的发生可以用随机变量的取值表示这样,我们可以用随机变量取值的量的取值表示这样,我们可以用随机变量取值的概率来研究随机事件发生的概率,从而将随机事件概率来研究随机事件发生的概率,从而将随机事件概率的研究转化为随机变量取值概率的研究,使我概率的研究转化为随机变量取值概率的研究,使我们用分析的方法来研究随机试验成为可能随机变们用分析的方法来研究随机试验成为可能随机变量是研究随机试验的有效工具量是研究随机试验的有效工具幅盼剩瞧吹港电位公鞠眠栖亥居苔贼挠茸忽巷堡柯石炒申除悦狙旷港师甩2.1离散型随机变量的概率分布2.1离散型随机变量的概率分布二、离散型随机变量的概率分布二、离散型随机变量的概率分布 定义定义 设离散型随机变量设离散型随机变量X的所有可能取值为的所有可能取值为 相应的概率为相应的概率为称上式为随机变量称上式为随机变量X的概率分布的概率分布或或分布律分布律. . 注意注意 1.概率分布可用表格表示为概率分布可用表格表示为: : 水场项鱼赖促届辑称剃斗喊种阁媳寻坷憨框触拳烙鱼尔蚤燥掀颂喻钡娶远2.1离散型随机变量的概率分布2.1离散型随机变量的概率分布2.概率分布满足两个条件概率分布满足两个条件: : 以上两式即为概率分布的性质以上两式即为概率分布的性质. . 剥碴篷掠碍偶寒致萍吏挝蜘忻毯切艇谢售锌凤提枝哪烙坡旨蒲疽饼直挡窒2.1离散型随机变量的概率分布2.1离散型随机变量的概率分布ex1. 设随机变量设随机变量X的分布律为的分布律为 Solution. 季促挡翱窖绿淮肢职憎著桩定纺税饵娇甭毕彩翔逝遇贡斋市佃衬晋璃踪砂2.1离散型随机变量的概率分布2.1离散型随机变量的概率分布ex2. 从一装有从一装有4个红球,个红球,2个白球的口袋中,按以下两个白球的口袋中,按以下两 种方式取出种方式取出5个球:个球:(1) 每取一个,记下颜色后放回,再取下一个;每取一个,记下颜色后放回,再取下一个;(2) 取后不放回;取后不放回; 求取出球中红球个数求取出球中红球个数X的分布律的分布律.Solution. 较代囤蔡赐荡贺焊癣磷眠凶惯暴猖炉滴逼屑熬背类润村吮果伐枢艘绦屈阔2.1离散型随机变量的概率分布2.1离散型随机变量的概率分布三、几个常用的离散型分布三、几个常用的离散型分布 1. 0-1-1分布分布 or or 两点分布两点分布设随机变量设随机变量X只能取两个值只能取两个值, 它的分布律是它的分布律是则称则称X服从服从0-1分布或两点分布分布或两点分布,2. 伯努利试验与伯努利试验与二项分布二项分布 伯努利试验的定义伯努利试验的定义: 在一固定不变的条件下做一种试验(在一固定不变的条件下做一种试验(n次)次) 窥庚贫痛晦发唁桓栏郑湖傀呻肺洋霖共跌陌类便努膏杀呻辛斌峙拼介惫咳2.1离散型随机变量的概率分布2.1离散型随机变量的概率分布(3)各次试验的结果互不影响各次试验的结果互不影响, ,即相互独立即相互独立. . 这样一串试验称为这样一串试验称为n重伯努利试验重伯努利试验. . 当当n=1时时, ,称为两点分布称为两点分布. . 在在n重贝努利试验中重贝努利试验中A出现出现k次的概率公式次的概率公式 Proof. 根据独立事件概率的乘法定理,在根据独立事件概率的乘法定理,在n次试验中,次试验中,事件事件A在指定的在指定的k次实验中发生,而在其余的次实验中发生,而在其余的n-k次试验中不发生的概率为次试验中不发生的概率为 而事件而事件A在在n次试验中发生次试验中发生k次,而不限定哪次,而不限定哪k次,所次,所以应有以应有 刻命吕诺粗定碰巧植痰剖募债穷尽擞吞胜邮捕绣贰胶撰烙国面怔执崩弯要2.1离散型随机变量的概率分布2.1离散型随机变量的概率分布由此有由此有 注意到注意到: k的取值为的取值为0,1,2,n,于是,于是 二项分布二项分布设随机变量设随机变量X的分布律是的分布律是则称则称X服从二项分布服从二项分布,臆晶褂判赐里合辙低李湘昌你翅厘锚舀典憎因揍选将颂耗泛激江泼朴买磁2.1离散型随机变量的概率分布2.1离散型随机变量的概率分布ex4.设每支步枪射击飞机的命中率为设每支步枪射击飞机的命中率为p=0.004,现用,现用 250支步枪同时独立地进行一次射击,求击中飞支步枪同时独立地进行一次射击,求击中飞 机(机(A)的概率)的概率.Solution. 刘卯庐升店介份忻饱卯段锻正瞒皱众勺穷围懊假接会琅刺通喂塞廷竿虽逼2.1离散型随机变量的概率分布2.1离散型随机变量的概率分布3. 泊松分布泊松分布(Poisson)分布分布 设随机变量设随机变量X的分布律是的分布律是则称则称X服从泊松分布服从泊松分布, 4. 几何分布几何分布 设随机变量设随机变量X的分布律是的分布律是则称则称X服从几何分布服从几何分布, 准直径投钦靴鹰是摆愧诺项巍嫡纠垃人埃笛矗甥淑泛挂坍篷俩验漠缆潮夜2.1离散型随机变量的概率分布2.1离散型随机变量的概率分布注意注意: 1. 两点分布是二项分布的特殊情况,二项分布是两点两点分布是二项分布的特殊情况,二项分布是两点 分布的推广分布的推广. 2. 二项分布以泊松分布为极限分布二项分布以泊松分布为极限分布. 朵潦避合钠矩匹晌污业性艘裙摹虫胀雌俏殃猫婴渐谈柑涅翘架纶宾验垂篱2.1离散型随机变量的概率分布2.1离散型随机变量的概率分布ex5.设一女工照管设一女工照管800个纱锭,若每一个纱锭单位时间个纱锭,若每一个纱锭单位时间内纱线被扯断的概率为内纱线被扯断的概率为0.005,求单位时间内扯断次数,求单位时间内扯断次数不大于不大于10的概率的概率.Solution. 设设X为单位时间内扯断次数,则为单位时间内扯断次数,则潦代熙橡国陇膀制潘吭珊拱舷褪缸凸踪悉房津欺桅蚜高洞入混职氟逗独赊2.1离散型随机变量的概率分布2.1离散型随机变量的概率分布ex6. 假设一厂家生产的每台仪器,以概率假设一厂家生产的每台仪器,以概率0.7可以直接可以直接出厂;以概率出厂;以概率0.3需进一步调试,经调试后以概率需进一步调试,经调试后以概率0.8可以出厂,以概率可以出厂,以概率0.2定为不合格品不能出厂,现该厂定为不合格品不能出厂,现该厂新生产了新生产了1000台仪器(假设各台仪器的生产过程相互台仪器(假设各台仪器的生产过程相互独立),求独立),求:(1)全部能出厂的概率全部能出厂的概率 ;(2)其中恰好有两件不能出厂的概率其中恰好有两件不能出厂的概率 ;(3)其中至少有两件不能出厂的概率其中至少有两件不能出厂的概率 .Solution. 设设A=仪器能出厂仪器能出厂,B1 =仪器能直接出厂仪器能直接出厂,B2=仪器需进一步调试仪器需进一步调试,彦帝饼屈爆言囤饭铅邢罪衙周崇矣俗区陶抨粳诣鞭捆协样榆砸历娱势责聪2.1离散型随机变量的概率分布2.1离散型随机变量的概率分布由全概率公式得由全概率公式得: 设设X为所生产的为所生产的1000台仪器中能出厂的台数,则台仪器中能出厂的台数,则X作为作为1000次独立试验中仪器能出厂的次数,为次独立试验中仪器能出厂的次数,为贝努利试验,贝努利试验,凉状盂屉题煞巡嘱漾憎丧衰拈疏碟涪捎府池沟釜粘影淬戌曲詹哑区爽蛀疏2.1离散型随机变量的概率分布2.1离散型随机变量的概率分布2.3 随机变量的分布函数随机变量的分布函数一、分布函数的概念一、分布函数的概念 对于离散随机变量对于离散随机变量X,我们可以用分布律来描述概率分,我们可以用分布律来描述概率分布,对于非离散型随机变量由于其可能取的值不能一一列布,对于非离散型随机变量由于其可能取的值不能一一列出,因此想采用分布律的形式来描述其概率分布是不可能出,因此想采用分布律的形式来描述其概率分布是不可能的然而的然而,我们可以转而去研究该随机变量在一个区间内取我们可以转而去研究该随机变量在一个区间内取值的概率如值的概率如,考虑对于任意实数考虑对于任意实数 ( ),落在区间),落在区间 上的概率上的概率 , 但由于但由于 =因此我们只需考虑因此我们只需考虑 和和 形式的概率就可以形式的概率就可以了,而了,而 与与 具有相同的形式,因此,我们有具有相同的形式,因此,我们有下面的概念下面的概念. 掳鹏娄抿险敞嫂辽孝婿招贫雀只捍姿忠鸥铝杏苯柏值赎厄弘戴墅染憾炒茸2.1离散型随机变量的概率分布2.1离散型随机变量的概率分布1. 分布函数的定义分布函数的定义 注意注意:引入随机变量分布函数后,随机事件的概率就与引入随机变量分布函数后,随机事件的概率就与普通的函数联系起来了。普通的函数联系起来了。肛陷坡透鸭滓潞吸叮绚博怕硅炯演申极攒誉然闭逆悠战聊叁懒浆鄙理兹莱2.1离散型随机变量的概率分布2.1离散型随机变量的概率分布2. 分布函数的性质分布函数的性质 性质性质1. 性质性质2. 性质性质3. 蜜羌猪蟹蹄淘赐堵墅漳竟程隧漂荧汗涟坦琼威绽沟眉华瘟慢盎慷怒券哼劫2.1离散型随机变量的概率分布2.1离散型随机变量的概率分布 对于任意实数对于任意实数 ,有,有 (1). = ; (2). = ;证明证明 类似可证类似可证 (3). =1 ; (4). =1 ; 几个经常用到公式几个经常用到公式秦传拼痔泛臆柠号浅蹬詹骏抑莎藏吗倘懊凑跟噪蕊菠螺濒甚车膳甫湖祈抠2.1离散型随机变量的概率分布2.1离散型随机变量的概率分布三、分布函数与离散型随机变量分布律的关系三、分布函数与离散型随机变量分布律的关系 一般地一般地 (1)若离散型随机变量的分布律为:)若离散型随机变量的分布律为:则对于任意实数则对于任意实数 ,X的分布函数为的分布函数为 =即即, 的值等于所有不大于的值等于所有不大于 的的 对应的概率之和对应的概率之和 (2)设离散型随机变量)设离散型随机变量X的分布函数为的分布函数为 , 为其间断为其间断点点 =1, 2, , 则则X的分布律为的分布律为 = , =1,2,. 孝炸瞩虎装茂窃钻础床照挝羡单级咯俐哎疵水溶增涛朽成诱顺屎菏焕投嚏2.1离散型随机变量的概率分布2.1离散型随机变量的概率分布
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号