资源预览内容
第1页 / 共50页
第2页 / 共50页
第3页 / 共50页
第4页 / 共50页
第5页 / 共50页
第6页 / 共50页
第7页 / 共50页
第8页 / 共50页
第9页 / 共50页
第10页 / 共50页
亲,该文档总共50页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
第三章第三章 平均数、标准差平均数、标准差与变异系数与变异系数 第一节第一节 平均数平均数下一张下一张 主主 页页 退退 出出 上一张上一张 1 1教育教学教育教学 平均数是统计学中最常用的统计量,用来表明平均数是统计学中最常用的统计量,用来表明平均数是统计学中最常用的统计量,用来表明平均数是统计学中最常用的统计量,用来表明资料中各观测值相对集中较多的中心位置。平均数资料中各观测值相对集中较多的中心位置。平均数资料中各观测值相对集中较多的中心位置。平均数资料中各观测值相对集中较多的中心位置。平均数主要包括有:主要包括有:主要包括有:主要包括有: 算术平均数算术平均数算术平均数算术平均数(arithmetic meanarithmetic mean) 中位数中位数中位数中位数(medianmedian) 众数众数众数众数(modemode) 几何平均数几何平均数几何平均数几何平均数(geometric meangeometric mean) 调和平均数调和平均数调和平均数调和平均数(harmonic meanharmonic mean) 下一张下一张 主主 页页 退退 出出 上一张上一张 2 2教育教学教育教学 一、算术平均数一、算术平均数 算术平均数算术平均数是指资料中各观测值的总和除是指资料中各观测值的总和除以观测值个数所得的商,简称以观测值个数所得的商,简称平均数或均数平均数或均数,记为。记为。 算术平均数可根据样本大小及分组情况而算术平均数可根据样本大小及分组情况而采用直接法或加权法计算。采用直接法或加权法计算。 (一一)直接法直接法 主要用于样本含量主要用于样本含量n30以下、未经分组以下、未经分组资料平均数的计算。资料平均数的计算。下一张下一张 主主 页页 退退 出出 上一张上一张 3 3教育教学教育教学 设某一资料包含设某一资料包含设某一资料包含设某一资料包含n n个观测值:个观测值:个观测值:个观测值: x x1 1、x x2 2、x xn n, 则样本平均数可通过下式计算:则样本平均数可通过下式计算:则样本平均数可通过下式计算:则样本平均数可通过下式计算: (3-13-1) 其中,其中,其中,其中, 为总和符号;为总和符号;为总和符号;为总和符号; 表示从第一个观测表示从第一个观测表示从第一个观测表示从第一个观测值值值值x x1 1累加到第累加到第累加到第累加到第n n个观测值个观测值个观测值个观测值x xn n。当。当。当。当 在意义上已明在意义上已明在意义上已明在意义上已明确时,可简写为确时,可简写为确时,可简写为确时,可简写为 x x,(,(,(,(3-13-1)式可改写为:)式可改写为:)式可改写为:)式可改写为: 下一张下一张 主主 页页 退退 出出 上一张上一张 4 4教育教学教育教学 【例例例例3.13.1】 某种公牛站测得某种公牛站测得某种公牛站测得某种公牛站测得1010头成年公牛的体头成年公牛的体头成年公牛的体头成年公牛的体重分别为重分别为重分别为重分别为500500、520520、535535、560560、585585、600600、480480、510510、505505、490490(kgkg),求其平均数。),求其平均数。),求其平均数。),求其平均数。 由于由于由于由于 x x=500+520+535+560+58 =500+520+535+560+58 +600+480+510+505+49 +600+480+510+505+49 =5285 =5285, n n=10=10 下一张 主 页 退 出 上一张 5 5教育教学教育教学 得:得: 即即10头种公牛平均体重为头种公牛平均体重为528.5 kg。 (二)加权法(二)加权法 对于样本含量对于样本含量 n30 以上且已分组的资以上且已分组的资料,可以在次数分布表的基础上采用加权法计料,可以在次数分布表的基础上采用加权法计算平均数,计算公式为:算平均数,计算公式为: (3-2) 下一张下一张 主主 页页 退退 出出 上一张上一张 6 6教育教学教育教学 式中:式中: 第第i组的组中值;组的组中值; 第第i组的次数;组的次数; 分组数分组数 第第i组的次数组的次数fi是权衡第是权衡第i组组中值组组中值xi在资料在资料中所占比重大小的数量,因此将中所占比重大小的数量,因此将fi 称为是称为是xi的的“权权”,加权法也由此而得名。,加权法也由此而得名。 【例例3.2】 将将100头长白母猪的仔猪一月头长白母猪的仔猪一月窝重(单位:窝重(单位:kg)资料整理成次数分布表如)资料整理成次数分布表如下,求其加权数平均数。下,求其加权数平均数。下一张下一张 主主 页页 退退 出出 上一张上一张 7 7教育教学教育教学 表表表表3 31 1001 100头长白母猪仔猪一月窝重次数分布表头长白母猪仔猪一月窝重次数分布表头长白母猪仔猪一月窝重次数分布表头长白母猪仔猪一月窝重次数分布表下一张下一张 主主 页页 退退 出出 上一张上一张 8 8教育教学教育教学 利用(利用(32)式得:)式得: 即这即这100头长白母猪仔猪一月龄平均窝重头长白母猪仔猪一月龄平均窝重为为45.2kg。 计算若干个来自同一总体的样本平均数的计算若干个来自同一总体的样本平均数的平均数时,如果样本含量不等,也应采用加权平均数时,如果样本含量不等,也应采用加权法计算。法计算。 下一张下一张 主主 页页 退退 出出 上一张上一张 9 9教育教学教育教学 【例例3.3】 某牛群有黑白花奶牛某牛群有黑白花奶牛 1500头,其平均体重为头,其平均体重为750 kg ,而另一牛群有黑,而另一牛群有黑白花奶牛白花奶牛1200头,平均体重为头,平均体重为725 kg,如,如果将这两个牛群混合在一起,其混合后平均体果将这两个牛群混合在一起,其混合后平均体重为多少?重为多少? 此例两个牛群所包含的牛的头数不等,要此例两个牛群所包含的牛的头数不等,要计算两个牛群混合后的平均体重,应以两个牛计算两个牛群混合后的平均体重,应以两个牛群牛的头数为权,求两个牛群平均体重的加权群牛的头数为权,求两个牛群平均体重的加权平均数,即平均数,即 下一张下一张 主主 页页 退退 出出 上一张上一张 1010教育教学教育教学 即两个牛群混合后平均体重为即两个牛群混合后平均体重为738.89 kg。 (三)平均数的基本性质(三)平均数的基本性质 1、样本各观测值与平均数之差的和为零,、样本各观测值与平均数之差的和为零,即即离均差之和等于零离均差之和等于零。 或简写成或简写成下一张下一张 主主 页页 退退 出出 上一张上一张 1111教育教学教育教学 2 2、样本各观测值与平均数之差的平方和为最小,、样本各观测值与平均数之差的平方和为最小,、样本各观测值与平均数之差的平方和为最小,、样本各观测值与平均数之差的平方和为最小,即即即即离均差平方和为最小离均差平方和为最小离均差平方和为最小离均差平方和为最小。 ( (x xi i- )- )2 2 ( (x xi i- a- a) )2 2 (常数(常数(常数(常数a a ) 或简写为:或简写为:或简写为:或简写为: 几何平均数几何平均数调和平均数调和平均数 上述五种平均数,最常用的是算术平均数。上述五种平均数,最常用的是算术平均数。2929教育教学教育教学第二节第二节 标准差标准差 一、标准差的意义一、标准差的意义 用平均数作为样本的代表,其代表性的强用平均数作为样本的代表,其代表性的强弱受样本资料中各观测值变异程度的影响。仅弱受样本资料中各观测值变异程度的影响。仅用平均数对一个资料的特征作统计描述是不全用平均数对一个资料的特征作统计描述是不全面的,还需引入一个表示资料中观测值变异程面的,还需引入一个表示资料中观测值变异程度大小的统计量。度大小的统计量。下一张下一张 主主 页页 退退 出出 上一张上一张 3030教育教学教育教学 全距(极差)全距(极差)是表示资料中各观测值是表示资料中各观测值变异程度大小最简便的统计量。但是全距变异程度大小最简便的统计量。但是全距只利用了资料中的最大值和最小值,并不只利用了资料中的最大值和最小值,并不能准确表达资料中各观测值的变异程度,能准确表达资料中各观测值的变异程度,比较粗略。当资料很多而又要迅速对资料比较粗略。当资料很多而又要迅速对资料的变异程度作出判断时,可以利用全距这的变异程度作出判断时,可以利用全距这个统计量。个统计量。 下一张下一张 主主 页页 退退 出出 上一张上一张 3131教育教学教育教学 为为 了了 准准 确确 地地 表示样本内各个观测值的变表示样本内各个观测值的变异程度异程度 ,人们,人们 首首 先会考虑到以平均数为标准,先会考虑到以平均数为标准,求出各个观测值与平均数的离差,(求出各个观测值与平均数的离差,( ) ,称为称为离均差离均差。 虽然离均差能表示一个观测值偏离平均数的虽然离均差能表示一个观测值偏离平均数的性质和程度,但因为离均差有正、有负性质和程度,但因为离均差有正、有负 ,离均,离均差之和差之和 为零,即(为零,即( ) = 0 ,因,因 而而 不不 能能 用离均差之和用离均差之和( )来)来 表表 示示 资料中所有资料中所有观测值的总偏离程度。观测值的总偏离程度。 下一张下一张 主主 页页 退退 出出 上一张上一张 3232教育教学教育教学 为了解决离均差有正为了解决离均差有正 、有负,离均差、有负,离均差之和为零的问之和为零的问 题题 , 可先求可先求 离离 均均 差的绝差的绝 对对 值值 并并 将将 各各 离离 均均 差差 绝对绝对 值值 之之 和和 除除以以 观观 测测 值值 个个 数数 n 求求 得得 平平 均均 绝绝 对对 离离差,即差,即| |/n。虽然平均绝对离差可。虽然平均绝对离差可以表示资料中各观测值的变异程度以表示资料中各观测值的变异程度 ,但由,但由于平均绝对离差包含绝对值符号于平均绝对离差包含绝对值符号 ,使用很,使用很不方便,在统计学中未被采用。不方便,在统计学中未被采用。3333教育教学教育教学 我们还可以采用将离均差平方的办法来解决我们还可以采用将离均差平方的办法来解决离均差有正、有负,离均差之和为零的问题。离均差有正、有负,离均差之和为零的问题。 先将各先将各 个离个离 均差平方,即均差平方,即 ( )2 ,再,再求求 离均差平方和离均差平方和 , 即即 ,简称,简称平方和平方和,记为记为SS; 由由 于于 离差平方和离差平方和 常常 随随 样样 本本 大大 小小 而而 改改 变变 ,为,为 了了 消消 除除 样样 本大小本大小 的的 影影 响响 , 用平方和用平方和 除除 以以 样样 本本 大大 小,小, 即即 ,求,求出离均差平方和的平均数出离均差平方和的平均数 ;下一张下一张 主主 页页 退退 出出 上一张上一张 3434教育教学教育教学 为了使所得的统计量是相应总体参数的无为了使所得的统计量是相应总体参数的无 偏偏估计量,统计学证明,在求离均差平方和的平均估计量,统计学证明,在求离均差平方和的平均数时,分母不用样本含量数时,分母不用样本含量n,而用自由度,而用自由度 n-1, 于是,我们于是,我们 采采 用统计量用统计量 表示资料表示资料的变异程度。的变异程度。 统计量统计量 称称 为为 均均 方方 ( mean square缩写为缩写为MS),又称又称样本方差样本方差,记为记为S2,即,即 S2= (39) 下一张下一张 主主 页页 退退 出出 上一张上一张 3535教育教学教育教学 相应的总体参数叫相应的总体参数叫 总体方差总体方差 ,记,记为为2。对于有限总体而言,。对于有限总体而言,2的计算的计算公式为:公式为: (310)3636教育教学教育教学 由于由于 样本方差样本方差 带有原观测单位的带有原观测单位的 平平方单位,在仅表示一个资料中各观测值的方单位,在仅表示一个资料中各观测值的变异程度而不作其它分析时变异程度而不作其它分析时 , 常需要与常需要与平均数配合使用平均数配合使用 ,这,这 时应时应 将平方单位还将平方单位还原,即应求出样本方差的平方根。统计学原,即应求出样本方差的平方根。统计学上把样本方差上把样本方差 S2 的平方根叫做的平方根叫做样本标准样本标准 差差,记为,记为S,即:,即: (3-11) 下一张下一张 主主 页页 退退 出出 上一张上一张 3737教育教学教育教学 由于由于 所以(所以(3-11)式可改写为:)式可改写为: (3-12) 下一张下一张 主主 页页 退退 出出 上一张上一张 3838教育教学教育教学 相应的总体参数叫相应的总体参数叫总体标准差总体标准差,记,记为为。对于有限总体而言,。对于有限总体而言,的计算公式的计算公式为:为: (3-13) 在统计学中,常用样本标准差在统计学中,常用样本标准差S估计估计总体标准差总体标准差。 下一张下一张 主主 页页 退退 出出 上一张上一张 3939教育教学教育教学二、标准差的计算方法二、标准差的计算方法 (一)直接法(一)直接法 对于未分组或小样本资料对于未分组或小样本资料 , 可直可直接利用(接利用(311)或()或(3-12)式来计)式来计算标准差。算标准差。4040教育教学教育教学 【例例3.9】 计算计算10只辽宁绒山羊产绒量:只辽宁绒山羊产绒量: 450, 450, 500, 500, 500,550, 550, 550, 600, 600,650(g)的)的标准差。标准差。 此例此例n=10,经计算得:,经计算得:x=5400,x2=2955000,代入(,代入(312)式得:)式得: (g) 即即10只辽宁绒山羊产绒量的只辽宁绒山羊产绒量的 标准差标准差 为为65.828g。下一张下一张 主主 页页 退退 出出 上一张上一张 4141教育教学教育教学 (二)加权法(二)加权法 对于已制成次数分布表的大样本资料,可对于已制成次数分布表的大样本资料,可利用次数分布表,采用加权法计算标准差。计利用次数分布表,采用加权法计算标准差。计算公式为:算公式为: (3 31414) 式中,式中,f为各组次数;为各组次数;x为各组的组中值;为各组的组中值;f = n为总次数。为总次数。 下一张下一张 主主 页页 退退 出出 上一张上一张 4242教育教学教育教学 【例例3.10】 利用某纯系蛋鸡利用某纯系蛋鸡200枚蛋重资枚蛋重资料的次数分布表(见表料的次数分布表(见表3-4)计算标准差。)计算标准差。 将表将表3-4中的中的f、fx、 代入(代入(314)式得:)式得: ( (g g ) ) 即某即某 纯纯 系系 蛋蛋 鸡鸡200枚枚 蛋蛋 重的标准差为重的标准差为3.5524g。下一张下一张 主主 页页 退退 出出 上一张上一张 4343教育教学教育教学 表表表表3 34 4 某纯系蛋鸡某纯系蛋鸡某纯系蛋鸡某纯系蛋鸡200200枚蛋重资料次数分布枚蛋重资料次数分布枚蛋重资料次数分布枚蛋重资料次数分布 及标准差计算表及标准差计算表及标准差计算表及标准差计算表下一张下一张 主主 页页 退退 出出 上一张上一张 4444教育教学教育教学 三、标准差的特性三、标准差的特性三、标准差的特性三、标准差的特性 (一)(一)(一)(一)标准差的大小,受资料中每个观测值的影标准差的大小,受资料中每个观测值的影标准差的大小,受资料中每个观测值的影标准差的大小,受资料中每个观测值的影响,如观测值间变异大,求得的标准差也大,反之则响,如观测值间变异大,求得的标准差也大,反之则响,如观测值间变异大,求得的标准差也大,反之则响,如观测值间变异大,求得的标准差也大,反之则小。小。小。小。 (二)(二)(二)(二)在计算标准差时,在各观测值加上或减去在计算标准差时,在各观测值加上或减去在计算标准差时,在各观测值加上或减去在计算标准差时,在各观测值加上或减去一个常数,其数值不变。一个常数,其数值不变。一个常数,其数值不变。一个常数,其数值不变。 (三)(三)(三)(三)当每个观测值乘以或除以一个常数当每个观测值乘以或除以一个常数当每个观测值乘以或除以一个常数当每个观测值乘以或除以一个常数a a,则所,则所,则所,则所得的标准差是原来标准差的得的标准差是原来标准差的得的标准差是原来标准差的得的标准差是原来标准差的a a倍或倍或倍或倍或1 1/a/a倍。倍。倍。倍。 下一张下一张 主主 页页 退退 出出 上一张上一张 4545教育教学教育教学 (四)(四)在资料服从正态分布的条件下,资在资料服从正态分布的条件下,资料中约有料中约有68.26%的观测值在平均数左右一的观测值在平均数左右一倍标准差(倍标准差( S)范围内;约有)范围内;约有95.43%的观测值在平均数左右两倍标准差(的观测值在平均数左右两倍标准差( 2S)范围内;约有)范围内;约有99.73%的观测值在平的观测值在平均数左右三倍标准差(均数左右三倍标准差( 3S) 范范 围内。围内。也就是说全距近似地等于也就是说全距近似地等于6倍标准差,可用倍标准差,可用(全距(全距/6)来粗略估计标准差。)来粗略估计标准差。 下一张下一张 主主 页页 退退 出出 上一张上一张 4646教育教学教育教学第三节第三节 变异系数变异系数 变异系数是衡量资料中各观测值变异变异系数是衡量资料中各观测值变异 程度的另一个统计量程度的另一个统计量 。 标标 准差与平均数的比值称为准差与平均数的比值称为 变异系变异系数数,记为,记为CV。 变异系数可以消除单位变异系数可以消除单位 和和 (或)平(或)平 均数不同对两个或多个资料变异程度比较均数不同对两个或多个资料变异程度比较的影响。的影响。 下一张下一张 主主 页页 退退 出出 上一张上一张 4747教育教学教育教学 变异系数的计算公式为:变异系数的计算公式为: (315) 【例例3.11】 已知某良种猪场长白成年母已知某良种猪场长白成年母猪平均体重为猪平均体重为 190kg, 标准差为标准差为10.5kg,而大约克成年母猪平均体重为而大约克成年母猪平均体重为196kg,标准,标准差为差为8.5kg,试问两个品种的成年母猪,那一,试问两个品种的成年母猪,那一个体重变异程度大。个体重变异程度大。 下一张下一张 主主 页页 退退 出出 上一张上一张 4848教育教学教育教学 由于,长白成年母猪体重的变异系数:由于,长白成年母猪体重的变异系数: 大约克成年母猪体重的变异系数:大约克成年母猪体重的变异系数: 所以,长白成年母猪体重的变异程度大于所以,长白成年母猪体重的变异程度大于大约克成年母猪。大约克成年母猪。 下一张下一张 主主 页页 退退 出出 上一张上一张 4949教育教学教育教学 注意,变异系数的大小,同时受平均数和标准差两个统计量的影响,因而在利用变异系数表示资料的变异程度时,最好将平均数和标准差也列出。下一张 主 页 退 出 上一张 5050教育教学教育教学
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号