资源预览内容
第1页 / 共35页
第2页 / 共35页
第3页 / 共35页
第4页 / 共35页
第5页 / 共35页
第6页 / 共35页
第7页 / 共35页
第8页 / 共35页
第9页 / 共35页
第10页 / 共35页
亲,该文档总共35页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
第二十二讲第七章 第二节窗函数法设计FIR滤波 学习目标理解窗函数法设计FIR滤波器的思路 了解吉布斯效应 了解各种窗函数掌握窗函数的设计方法窗函数法设计FIR滤波的思想 一般是先给所要求的理想的滤波器的频率一般是先给所要求的理想的滤波器的频率响应响应 ,要求设计一个,要求设计一个FIRFIR滤波器频率响滤波器频率响应应 来逼近来逼近 。但是设计是在。但是设计是在时域进行的,因而先由时域进行的,因而先由 的傅立叶变换导的傅立叶变换导出出 ,即,即 但一般情况下, 是逐段恒定,在边界频率处有不连续点,因而 是无限时宽的,且是非因果序列, 而我们要设计的是FIR滤波器,其 必然是有限长的,这时我们只有将 截取一段,用一个有限长度线 性相位滤波 器逼近无限长的 ,并保证截取的一段对 对称。设截取的一段用 表示。 即 是一个矩形序列,长度为 。 1 1、设计思路分析、设计思路分析逼近误差取决于窗函数序列w(n):要选择合适的形状和长度要选择合适的形状和长度理想滤波器理想滤波器的频响的频响冲激响应无限长冲激响应无限长且非因果,物理且非因果,物理无法实现无法实现以低通滤波器为例讨论:以低通滤波器为例讨论:线性相位理想低通滤波器的频率响应:其理想单位抽样响应:中心点为 的偶对称无限长非因果序列 线性相位理想低通滤波器及矩形窗函数的线性相位理想低通滤波器及矩形窗函数的频率响应图解频率响应图解矩形窗谱的特点,矩形窗谱的特点,N N越大主越大主瓣越窄,波动越密。瓣越窄,波动越密。实现过程如图所示以上就是用窗函数法设计FIR滤波器的思路。取矩形窗:则FIR滤波器的单位抽样响应:按第一类线性相位条件,得2.2.窗函数设计法的数学描述窗函数设计法的数学描述: :加窗处理后对理想频率响应的影响:加窗处理后对理想频率响应的影响:时域乘积相当于频域卷积而矩形窗的频率响应:相位函数相位函数 结论: 加窗处理对理想矩形频率响应产生以下几点影响。(1)使理想频率特性不连续点处边沿加宽,形成一个过渡带,过渡带宽等于窗的频率响应 的主瓣宽度 。 (2)带内增加了波动,最大的峰值在 处。阻带内产生了余振,最大的负峰在 处。通带与阻带中波动的情况与窗函数的幅度谱有关。 波动愈快(加大时),通带、阻带内波动愈快, 旁瓣的大小直接影响 波动的大小。吉布斯(Gibbs)效应 改变截取长度N ,只能改变窗谱的主瓣宽度、 的坐标比例以及改变 的绝对值大小,但是不能改变主瓣与旁瓣的相对比例。这个比例是由窗函数的形状来决定的。 上述用矩形窗加窗后频域的变化称为吉布斯效应。这种效应直接影响滤波器的性能。通带内的波动影响滤波器通带中的平稳性,阻带内的波动影响阻带内的衰减,可能使最小衰减不满足技术要求。一般滤波器都要求过渡带愈窄愈好。?:如何减少吉布斯效应的影响?:如何减少吉布斯效应的影响降低吉布斯效应对窗函数的要求从以上讨论可看出,一般希望窗函数满足两项要求:(1)窗谱主瓣尽可能的窄,以获得较陡的过渡带。 (措施:加大窗长即增加(措施:加大窗长即增加N N)(2)尽量减小窗谱的最大旁瓣的幅度,也就是能量尽量集中在主瓣,这样使肩峰和波纹减小,可以增大阻带的衰减。 (措施:措施:选择合适的窗函数)选择合适的窗函数)下面介绍各种常用的窗函数:下面介绍各种常用的窗函数:(1)矩形窗)矩形窗(Rectangle Window)主瓣宽度最窄,旁瓣幅度大。窗谱:幅度函数: 特点:3.各种常用的窗函数各种常用的窗函数(2)三角形窗)三角形窗(Bartlett Window)主瓣宽度宽,旁瓣幅度较小。窗谱:幅度函数: 特点:(3)汉宁汉宁(Hanning)窗窗升余弦窗升余弦窗主瓣宽度宽,旁瓣幅度小。幅度函数: 特点:(4)哈明)哈明(Hamming)窗窗改进的升余弦窗改进的升余弦窗主瓣宽度宽:,旁瓣幅度更小。幅度函数: 特点:(5)布莱克曼()布莱克曼(Blackman)窗)窗(二阶升余弦窗)(二阶升余弦窗)主瓣宽度最宽:,旁瓣幅度最小。幅度函数: 特点:(6)凯塞凯塞贝塞尔窗贝塞尔窗(Kaiser-Basel Window) :第一类变形零阶 贝塞尔函数五种窗函数的波形五种窗函数的波形(a)矩形窗;()矩形窗;(b)巴特利特窗(三角形窗);()巴特利特窗(三角形窗);(c)汉宁窗;)汉宁窗;(d)哈明窗;()哈明窗;(e)布莱克曼窗)布莱克曼窗五种窗函数的幅度特性五种窗函数的幅度特性理想低通加不同类型窗后频谱幅度特性比较理想低通加不同类型窗后频谱幅度特性比较5151,0.50.5)5151,0.50.5)(a)矩形窗;()矩形窗;(b)巴特利特窗(三角形窗);()巴特利特窗(三角形窗);(c)汉宁窗;)汉宁窗;(d)哈明窗;()哈明窗;(e)布莱克曼窗)布莱克曼窗 六种窗函数的基本参数六种窗函数的基本参数 此表是设计过程中选择的此表是设计过程中选择的主要依据!主要依据!4 4、窗函数法的设计步骤、窗函数法的设计步骤1)给定理想的频率响应函数及技术指标2)求出理想的单位抽样响应3)根据阻带衰减选择窗函数6)计算频率响应 ,验算指标是否满足要求4)根据过渡带宽度确定N值5)求所设计的FIR滤波器的单位抽样响应公式法:IFFT法:计算其IFFT,得:对 M点等间隔抽样:由的方法 例7.2.1 用矩形窗、汉宁窗和布莱克曼窗设计FIR低通滤波器,设N=11,c=0.2rad。 解 用理想低通作为逼近滤波器 用汉宁窗设计:用布莱克曼窗设计: 图7.2.7 例7.2.1的低通幅度特性解:1)求数字频率补充例题:设计一个线性相位FIR低通滤波器,给定抽样频率为 ,通带截止频率为 ,阻带起始频率为 ,阻带衰减不小于-50dB,幅度特性如图所示2)求hd(n)4)确定N 值3)选择窗函数:由 确定海明窗(-53dB)5)确定FIR滤波器的h(n)6)求 ,验证若不满足,则改变N或窗形状重新设计窗函数算法计算中的主要问题:(1)当 很复杂或不能直接计算积分时,则必须用求和代替积分,以便在计算机上计算。(2)窗函数设计法的另一个困难就是需要预先确定窗函数的形状和窗序列的点数 ,以满足给定的频率响应指标。这一困难可利用计算机采用累试法加以解决。 窗函数法的优点是简单,有闭合形式的公式可循,因而很实用。缺点是通带、阻带的截止频率不易控制。
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号