资源预览内容
第1页 / 共57页
第2页 / 共57页
第3页 / 共57页
第4页 / 共57页
第5页 / 共57页
第6页 / 共57页
第7页 / 共57页
第8页 / 共57页
第9页 / 共57页
第10页 / 共57页
亲,该文档总共57页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
5.5数列的综合应用数列的综合应用 5.5数数列列的的综综合合应应用用考点探究考点探究挑战高考挑战高考考向瞭望考向瞭望把脉高考把脉高考双基研习双基研习面对高考面对高考双基研习双基研习面对高考面对高考基础梳理基础梳理基础梳理基础梳理1解答数列应用题的步骤解答数列应用题的步骤(1)审题审题仔细阅读材料,认真理解题意仔细阅读材料,认真理解题意(2)建模建模将已知条件翻译成数学将已知条件翻译成数学(数列数列)语言,将语言,将实际问题转化成数学问题,弄清该数列的特征、要实际问题转化成数学问题,弄清该数列的特征、要求是什么求是什么(3)求解求解求出该问题的数学解求出该问题的数学解(4)还原还原将所求结果还原到原实际问题中将所求结果还原到原实际问题中2数列应用题常见模型数列应用题常见模型(1)等差模型:如果等差模型:如果_的量是一个固定量的量是一个固定量时,该模型是等差模型,增加时,该模型是等差模型,增加(或减少或减少)的量就是公的量就是公差差(2)等比模型:如果后一个量与前一个量的等比模型:如果后一个量与前一个量的_是一是一个固定的数时,该模型是等比模型,这个固定的数个固定的数时,该模型是等比模型,这个固定的数就是公比就是公比增加增加(或减少或减少)比比思考感悟思考感悟银行储蓄单利公式及复利公式是什么模型?银行储蓄单利公式及复利公式是什么模型?提示:提示:单利公式单利公式设本金为设本金为a元,每期利率为元,每期利率为r,存期为存期为n,则本利和,则本利和ana(1rn),属于等差模型,属于等差模型复利公式复利公式设本金为设本金为a元,每期利率为元,每期利率为r,存期为,存期为n,则本利和,则本利和ana(1r)n,属于等比模型,属于等比模型课前热身课前热身课前热身课前热身1(2009年高考四川卷年高考四川卷)等差数列等差数列an的公差不的公差不为零,首项为零,首项a11,a2是是a1和和a5的等比中项,则的等比中项,则数列数列an的前的前10项之和是项之和是()A90B100C145 D190答案:答案:B2已知等差数列已知等差数列an和等比数列和等比数列bn的首项均为的首项均为1,且公差,且公差d0,公比,公比q1,则集合,则集合n|anbn(nN)的元素的个数最多为的元素的个数最多为()A1 B2C3 D4答案:答案:B3(教材改编题教材改编题)电子计算机中使用的二进制与十电子计算机中使用的二进制与十进制的换算关系如下表所示:进制的换算关系如下表所示:十十进进制制12345678二二进进制制11011100 101 110111 1000 观察二进制为观察二进制为1位数、位数、2位数、位数、3位数时,对应的十进位数时,对应的十进制数,当二进制为制数,当二进制为6位数时,能表示十进制中的最大位数时,能表示十进制中的最大数是数是()A31 B63C111111 D999999答案:答案:B4已知三个数已知三个数a、b、c成等比数列,则函数成等比数列,则函数f(x)ax2bxc的图像与的图像与x轴公共点的个数为轴公共点的个数为_答案:答案:05近年来,太阳能技术运用的步伐日益加快,近年来,太阳能技术运用的步伐日益加快,2008年全球太阳电池的年生产量达到年全球太阳电池的年生产量达到670兆瓦,兆瓦,年生产量的增长率为年生产量的增长率为34%,以后四年年生产量的,以后四年年生产量的增长率逐年递增增长率逐年递增2%(2009年的增长率为年的增长率为36%),则,则预算预算2012年全球太阳电池的年生产量为年全球太阳电池的年生产量为_答案:答案:2499.8兆瓦兆瓦考点探究考点探究挑战高考挑战高考考点突破考点突破考点突破考点突破考点一考点一等差、等比数列的综合问题等差、等比数列的综合问题等差数列与等比数列结合的综合问题是高考考查等差数列与等比数列结合的综合问题是高考考查的重点,特别是等差、等比数列的通项公式,前的重点,特别是等差、等比数列的通项公式,前n项和公式以及等差中项、等比中项问题是历年命项和公式以及等差中项、等比中项问题是历年命题的热点题的热点例例例例1 1 (2010年高考陕西卷年高考陕西卷)已知已知an是公差不为是公差不为零的等差数列,零的等差数列,a11,且,且a1,a3,a9成等比数列成等比数列(1)求数列求数列an的通项;的通项;(2)求数列求数列2an的前的前n项和项和Sn.【思路点拨思路点拨】由已知条件列方程可求得等差数由已知条件列方程可求得等差数列的公差列的公差d,由等比数列的前,由等比数列的前n项和公式可求项和公式可求Sn.【名师点评名师点评】解决等差数列与等比数列的综合问题解决等差数列与等比数列的综合问题的关键在于综合运用等差数列和等比数列知识解题,的关键在于综合运用等差数列和等比数列知识解题,也就是涉及哪个数列问题就灵活地运用相关知识解决也就是涉及哪个数列问题就灵活地运用相关知识解决等差数列与等比数列之间是可以相互转化的即等差数列与等比数列之间是可以相互转化的即an为等差数列为等差数列 (a0且且a1)为等比数列;为等比数列;an为正为正项等比数列项等比数列 logaan(a0且且a1)为等差数列为等差数列变式训练变式训练1(2010年高考重庆卷年高考重庆卷)已知已知an是首项为是首项为19,公差为,公差为2的等差数列,的等差数列,Sn为为an的前的前n项和项和(1)求通项求通项an及及Sn;(2)设设bnan是首项为是首项为1,公比为,公比为3的等比数列,求数的等比数列,求数列列bn的通项公式及前的通项公式及前n项和项和Tn.考点二考点二等差、等比数列的实际应用等差、等比数列的实际应用与数列有关的应用题大致有三类:一是有关等差与数列有关的应用题大致有三类:一是有关等差数列的应用题;二是有关等比数列的应用题;三数列的应用题;二是有关等比数列的应用题;三是有关递推数列中可化成等差、等比数列的问题是有关递推数列中可化成等差、等比数列的问题当然,还包括几类问题的综合应用其中第一当然,还包括几类问题的综合应用其中第一类问题在内容上比较简单,建立等差数列模型类问题在内容上比较简单,建立等差数列模型后,问题常常转化成整式或整式不等式处理,很后,问题常常转化成整式或整式不等式处理,很容易计算对第二类问题,建立等比数列的模型容易计算对第二类问题,建立等比数列的模型后,弄清项数是关键,运算中往往要运用指数或后,弄清项数是关键,运算中往往要运用指数或对数不等式,常需要查表或依据题设中所给参考对数不等式,常需要查表或依据题设中所给参考数据进行近似计算,对其结果要按照要求保留一数据进行近似计算,对其结果要按照要求保留一定的精确度注意答案要符合题设中实际需要定的精确度注意答案要符合题设中实际需要对于第三类问题,要掌握将线性递推数列化成等对于第三类问题,要掌握将线性递推数列化成等比数列求解的方法比数列求解的方法例例例例2 2 (2010年高考湖北卷年高考湖北卷)已知某地今年年初拥有已知某地今年年初拥有居民住房的总面积为居民住房的总面积为a(单位:单位:m2),其中有部分旧住,其中有部分旧住房需要拆除当地有关部门决定每年以当年年初住房需要拆除当地有关部门决定每年以当年年初住房面积的房面积的10%建设新住房,同时也拆除面积为建设新住房,同时也拆除面积为b(单单位:位:m2)的旧住房的旧住房(1)分别写出第一年末和第二年末的实际住房面积的分别写出第一年末和第二年末的实际住房面积的表达式;表达式;(2)如果第五年末该地的住房面积正好比今年年初的如果第五年末该地的住房面积正好比今年年初的住房面积增加了住房面积增加了30%,则每年拆除的旧住房面积,则每年拆除的旧住房面积b是是多少?多少?(计算时取计算时取1.151.6)【思路点拨思路点拨】可逐年写出第一年末至第五年末的可逐年写出第一年末至第五年末的住房面积,然后列方程解出住房面积,然后列方程解出b.【规律小结规律小结】用数列知识解相关的实际问题,关用数列知识解相关的实际问题,关键是合理建立数学模型键是合理建立数学模型数列模型,弄清所构造数列模型,弄清所构造的数列的首项是什么,项数是多少,然后转化为解的数列的首项是什么,项数是多少,然后转化为解数列问题求解时,要明确目标,即搞清是求和,数列问题求解时,要明确目标,即搞清是求和,还是求通项,还是解递推关系问题,所求结论对应还是求通项,还是解递推关系问题,所求结论对应的是解方程问题,还是解不等式问题,还是最值问的是解方程问题,还是解不等式问题,还是最值问题,然后进行合理推算,得出实际问题的结果题,然后进行合理推算,得出实际问题的结果变式训练变式训练2职工小张年初向银行贷款职工小张年初向银行贷款2万元用于万元用于购房,银行贷款的年利率为购房,银行贷款的年利率为10%,按复利计算,按复利计算(即即本年的利息计入次年的本金本年的利息计入次年的本金)若这笔贷款要分若这笔贷款要分10年等额还清,每年年初还一次,并且从借款后次年等额还清,每年年初还一次,并且从借款后次年年初开始还款,那么每年应还多少元?年年初开始还款,那么每年应还多少元?(精确到精确到1元元)解:设每年还款解:设每年还款x元,需元,需10年还清,那么每年所还年还清,那么每年所还款及利息的情况如下:款及利息的情况如下:第第10年还款年还款x元,此次欠款全部还清;元,此次欠款全部还清;第第9年还款年还款x元,过元,过1年欠款全部还清时,所还款连年欠款全部还清时,所还款连同利息之和为同利息之和为x(110%)元;元;第第8年还款年还款x元,过元,过2年欠款全部还清时,所还款连年欠款全部还清时,所还款连同利息之和为同利息之和为x(110%)2元;元;考点三考点三数列与解析几何、不等式、函数的数列与解析几何、不等式、函数的交汇问题交汇问题数列与其它知识的综合问题主要指的是用几何方法数列与其它知识的综合问题主要指的是用几何方法或函数的解析式构造数列,用函数或方程的方法研或函数的解析式构造数列,用函数或方程的方法研究数列问题函数与数列的综合问题主要有以下两究数列问题函数与数列的综合问题主要有以下两类:类:一是已知函数的条件,利用函数的性质图像研究数一是已知函数的条件,利用函数的性质图像研究数列问题,如恒成立,最值问题等;二是已知数列条列问题,如恒成立,最值问题等;二是已知数列条件,利用数列的范围、公式、求和方法等知识对式件,利用数列的范围、公式、求和方法等知识对式子化简变形,从而解决函数问题子化简变形,从而解决函数问题例例例例3 3【思路点拨思路点拨】(1)充分利用切线、半径、原充分利用切线、半径、原点与圆心的连线所构成的直角三角形可证点与圆心的连线所构成的直角三角形可证rn为等比数列为等比数列(2)利用错位相减法求和利用错位相减法求和【名师点评名师点评】数列、解析几何、不等式是高考数列、解析几何、不等式是高考的重点内容,将三者密切综合在一起,强强联合的重点内容,将三者密切综合在一起,强强联合命制大型综合题是历年高考的热点和重点数列命制大型综合题是历年高考的热点和重点数列是特殊的函数,以数列为背景的不等式证明问题是特殊的函数,以数列为背景的不等式证明问题及以函数作为背景的数列的综合问题,体现了在及以函数作为背景的数列的综合问题,体现了在知识交汇点上命题的特点,该类综合题的知识综知识交汇点上命题的特点,该类综合题的知识综合性强,能很好地考查逻辑推理能力和运算求解合性强,能很好地考查逻辑推理能力和运算求解能力,因而一直是高考命题者的首选能力,因而一直是高考命题者的首选考点四考点四数列中的探索性问题数列中的探索性问题探索性问题往往需要由给定的条件去探究相应的探索性问题往往需要由给定的条件去探究相应的结论或由问题的结论去寻找相应的条件,在解题结论或由问题的结论去寻找相应的条件,在解题时应透过问题的表象去寻求、发现规律性的东西时应透过问题的表象去寻求、发现规律性的东西例例例例4 4【名师点评名师点评】本题主要考查数列、不等式本题主要考查数列、不等式等基础知识,化归思想、分类整合思想等数等基础知识,化归思想、分类整合思想等数学思想方法,以及推理论证、分析与解决问学思想方法,以及推理论证、分析与解决问题的能力题的能力方法感悟方法感悟方法技巧方法技巧1深刻理解等差深刻理解等差(比比)数列的性质,熟悉它们的推导数列的性质,熟悉它们的推导过程是解题的关键两类数列性质既有相似之处,过程是解题的关键两类数列性质既有相似之处,又有区别,要在应用中加强记忆同时,用好性质又有区别,要在应用中加强记忆同时,用好性质也会降低解题的运算量,从而减少差错也会降低解题的运算量,从而减少差错(如例如例4)2在等差数列与等比数列中,经常要根据条件列在等差数列与等比数列中,经常要根据条件列方程方程(组组)求解,在解方程组时,仔细体会两种情形求解,在解方程组时,仔细体会两种情形中解方程组的方法的不同之处中解方程组的方法的不同之处(如例如例1)3数列的渗透力很强,它和函数、方程、三角形、数列的渗透力很强,它和函数、方程、三角形、不等式等知识相互联系,优化组合,无形中加大了不等式等知识相互联系,优化组合,无形中加大了综合的力度解决此类题目,必须对蕴藏在数列概综合的力度解决此类题目,必须对蕴藏在数列概念和方法中的数学思想有所了解,深刻领悟它在解念和方法中的数学思想有所了解,深刻领悟它在解题中的重大作用,常用的数学思想方法有:题中的重大作用,常用的数学思想方法有:“函数函数与方程与方程”、“数形结合数形结合”、“分类讨论分类讨论”、“等价转换等价转换”等等(如例如例3)4在现实生活中,人口的增长、产量的增加、在现实生活中,人口的增长、产量的增加、成本的降低、存贷款利息的计算、分期付款问题成本的降低、存贷款利息的计算、分期付款问题等,都可以利用数列来解决,因此要会在实际问等,都可以利用数列来解决,因此要会在实际问题中抽象出数学模型,并用它解决实际问题题中抽象出数学模型,并用它解决实际问题(如例如例2)失误防范失误防范1等比数列的前等比数列的前n项和公式要分两种情况:公比项和公式要分两种情况:公比等于等于1和公比不等于和公比不等于1.最容易忽视公比等于最容易忽视公比等于1的情的情况,要注意这方面的练习况,要注意这方面的练习2数列的应用还包括实际问题,要学会建模,数列的应用还包括实际问题,要学会建模,对应哪一类数列,进而求解对应哪一类数列,进而求解3在有些情况下,证明数列的不等式要用到放在有些情况下,证明数列的不等式要用到放缩法缩法考情分析考情分析考情分析考情分析考向瞭望考向瞭望把脉高考把脉高考数列的综合应用是每年高考必考的内容,特别是等数列的综合应用是每年高考必考的内容,特别是等差数列与等比数列交汇,数列与解析几何、不等式、差数列与等比数列交汇,数列与解析几何、不等式、函数交汇是高考的热点,题型以解答题为主,难度函数交汇是高考的热点,题型以解答题为主,难度偏高,主要考查学生分析问题和解决问题的能力偏高,主要考查学生分析问题和解决问题的能力预测预测2012年高考,等差数列与等比数列交汇、数列年高考,等差数列与等比数列交汇、数列与不等式交汇是高考的主要考点,重点考查运算能与不等式交汇是高考的主要考点,重点考查运算能力和逻辑推理能力力和逻辑推理能力例例例例规范解答规范解答 (本题满分本题满分12分分)已知已知an是公差为是公差为d的等差数列,的等差数列,bn是公比为是公比为q的等比数列的等比数列(1)若若an3n1,是否存在,是否存在m、kN,有,有amam1ak?请说明理由;?请说明理由;(2)若若bnaqn(a、q为常数,且为常数,且aq0),对任意,对任意m存在存在k,有,有bmbm1bk,试求,试求a、q满足的充要条件;满足的充要条件;(3)若若an2n1,bn3n,试确定所有的,试确定所有的p,使数列,使数列bn中存在某个连续中存在某个连续p项的和是数列项的和是数列an中的一项,中的一项,请证明请证明【思路点拨思路点拨】处理第处理第(1)问时,将等差数列问时,将等差数列an的的通项公式代入等式通项公式代入等式amam1ak,然后从整除的角,然后从整除的角度判断等式是否有整数解;处理第度判断等式是否有整数解;处理第(2)问时,将等比问时,将等比数列数列bn的通项公式代入的通项公式代入bmbm1bk,研究等式成,研究等式成立的充要条件;处理第立的充要条件;处理第(3)问时,注意到问时,注意到an2n1是奇数,是奇数,bn3n也是奇数,当也是奇数,当p是偶数时,偶数个奇是偶数时,偶数个奇数的和不可能是奇数,等式不能成立,所以只需对数的和不可能是奇数,等式不能成立,所以只需对p为奇数进行讨论为奇数进行讨论【名师点评名师点评】(1)本题易错点有:一是解题过程本题易错点有:一是解题过程中忽视了正整数的限制,导致推理不严密或是解中忽视了正整数的限制,导致推理不严密或是解题错误;二是不会进行正整数的奇偶性分析,对题错误;二是不会进行正整数的奇偶性分析,对处理不定方程缺少必要的方法,导致解答错误处理不定方程缺少必要的方法,导致解答错误数列试题往往涉及整数,根据题目的具体情况,数列试题往往涉及整数,根据题目的具体情况,要会合理使用整数的有关性质解决问题要会合理使用整数的有关性质解决问题(2)对任意的正整数对任意的正整数m,等式,等式bmbm1bk都成立,不都成立,不妨取妨取m1,求出,求出a、q满足的条件为满足的条件为aqk3,再从,再从一般情形去验证这个条件在一般情况下是否成立,一般情形去验证这个条件在一般情况下是否成立,这是求解探索性问题的一种常见的思考方法这是求解探索性问题的一种常见的思考方法(3)本题从最常见的两个数列本题从最常见的两个数列等差数列和等比数等差数列和等比数列入手命制考题,在第列入手命制考题,在第(1)和第和第(2)问中,设计判断问中,设计判断满足条件的等式是否成立和等式成立的充要条件是满足条件的等式是否成立和等式成立的充要条件是什么?解题时的入手很低,仅需要将数列的通项什么?解题时的入手很低,仅需要将数列的通项公式代入等式展开判断和讨论即可但是,解题公式代入等式展开判断和讨论即可但是,解题的过程却需要有较强的数学知识的思辨能力和数的过程却需要有较强的数学知识的思辨能力和数学推理能力,这恰好是考生应该具备的数学素质学推理能力,这恰好是考生应该具备的数学素质和数学能力从基本的数学知识入手,站在和数学能力从基本的数学知识入手,站在“能能力立意力立意”的高度命题,既注重对数学知识的考查,的高度命题,既注重对数学知识的考查,更注重对考生数学能力的考查,是近年来高考命更注重对考生数学能力的考查,是近年来高考命题的指导思想题的指导思想名师预测名师预测本部分内容讲解结束本部分内容讲解结束点此点此进进入入课课件目件目录录按按ESC键键退出全屏播放退出全屏播放谢谢谢谢使用使用
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号