资源预览内容
第1页 / 共24页
第2页 / 共24页
第3页 / 共24页
第4页 / 共24页
第5页 / 共24页
第6页 / 共24页
第7页 / 共24页
第8页 / 共24页
第9页 / 共24页
第10页 / 共24页
亲,该文档总共24页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
如如图图, O的直径的直径 AB 为为10 cm,弦,弦 AC 为为cm, ACB 的平分的平分线线交交 O于于 D, 求求BC、AD、BD的的长长. 小小 测测点和圆的位置关系点和圆的位置关系点和圆的位置关系点和圆的位置关系CA 爱好运动的小华、小强、小兵三人相邀搞一次掷飞镖比赛。他们把靶子钉在一面土墙上,规则是谁掷出落点离红心越近,谁就胜。如下图中A、B、C三点分别是他们三人某一轮掷镖的落点,你认为这一轮中谁的成绩好? 问题情境B 如图,设如图,设O O 的半径为的半径为r r,A A点在圆内,点在圆内,B B点在圆上,点在圆上,C C点在圆外,那么点在圆外,那么点点A在在 O内内 点点B在在 O上上 点点C在在 O外外 OAr, OBr, OCr反反过过来来也也成成立立,如如果果已已知知点点到到圆圆心心的的距距离离和和圆圆的的半半径径的关系,就可以判断点和圆的位置关系。的关系,就可以判断点和圆的位置关系。点与圆的位置关系点与圆的位置关系 OAr OB=r OCrABCr设设OO 的的半半径径为为r r,点点P P到到圆圆心心的的距距离离OP=OP=d d,则有:则有:点点P在在 O内内 点点P在在 O上上 点点P在在 O外外 点与圆的位置关系点与圆的位置关系dr d=r drrpdprd Prd点与圆的位置关系点与圆的位置关系圆外的点圆外的点圆内的点圆内的点圆上的点圆上的点 平面上的一个圆,把平面上的点分成三类:圆上的点,圆内的点和圆外的点。 圆的内部可以看成是到圆心的距离小于半径的的点的集合;圆的外部可以看成是 。到圆心的距离大于半径的点的集合思考:平面上的一个圆把平面上的点分成哪几部分?例:如图已知矩形例:如图已知矩形ABCD的边的边AB=3厘米,厘米,AD=4厘米厘米典型例题典型例题ADCB(1 1)以点)以点A A为圆心,为圆心,3 3厘米为半径作厘米为半径作圆圆A A,则点,则点B B、C C、D D与圆与圆A A的位置关系的位置关系如何?如何? (B(B在圆上,在圆上,D D在圆外,在圆外,C C在圆外在圆外) )(2 2)以点)以点A A为圆心,为圆心,4 4厘米为半径作圆厘米为半径作圆A A,则点,则点B B、C C、D D与圆与圆A A的位置关系如何?的位置关系如何?(B(B在圆内,在圆内,D D在圆上,在圆上,C C在圆外在圆外) )(3 3)以点)以点A A为圆心,为圆心,5 5厘米为半径作圆厘米为半径作圆A A,则点,则点B B、C C、D D与圆与圆A A的位置关系如何?的位置关系如何?(B(B在圆内,在圆内,D D在圆内,在圆内,C C在圆上在圆上) )练一练练一练 1、 O的半径的半径10cm,A、B、C三点到圆心的距离分别为三点到圆心的距离分别为8cm、10cm、12cm,则点,则点A、B、C与与 O的位置关系是:的位置关系是:点点A在在 ;点;点B在在 ;点;点C在在 。 2、 O的半径的半径6cm,当,当OP=6时,点时,点A在在 ;当当OP 时点时点P在圆内;当在圆内;当OP 时,点时,点P不在圆外。不在圆外。 3、正方形正方形ABCD的边长为的边长为2cm,以,以A为圆心为圆心2cm为半为半径作径作 A,则点,则点B在在 A ;点;点C在在 A ;点;点D在在 A 。圆内圆内圆上圆上圆外圆外圆上圆上66上上外外上上 4、已知已知AB为为 O的的直径直径,P为为 O 上任意一点,则点上任意一点,则点P关于关于AB的对称点的对称点P与与 O的位置为的位置为( ) (A)在在 O内内 (B)在在 O 外外 (C)在在 O 上上 (D)不能确定不能确定c2cmDcABPPOBA 1、平面上有一点A,经过已知A点的圆有几个?圆心在哪里? 探究与实践OAOOOO 无数个,圆心为点A以外任意一点,半径为这点与点A的距离 2、平面上有两点A、B,经过已知点A、B的圆有几个?它们的圆心分布有什么特点? 探究与实践O OOOAB以线段以线段ABAB的垂直平分线上的任意一点为圆心的垂直平分线上的任意一点为圆心, ,以这点以这点到到A A或或B B的距离为半径作圆的距离为半径作圆. .无数个。它们的圆心都在线段无数个。它们的圆心都在线段ABAB的垂直平分线上。的垂直平分线上。 3 3、平面上有三点、平面上有三点A、B、C,经过,经过A、B、C三点的圆有几个?圆心在哪里?三点的圆有几个?圆心在哪里? 归纳结论归纳结论: 不在同一条直线上的三个点确定一个圆不在同一条直线上的三个点确定一个圆。探究与实践BC经过经过B,CB,C两点的圆的圆心在线段两点的圆的圆心在线段ABAB的垂直平分线上的垂直平分线上. .An经过经过A,B,CA,B,C三点的圆的圆心应该三点的圆的圆心应该这两条垂直平分线的交点这两条垂直平分线的交点O O的位置的位置. .O经过经过A,BA,B两点的圆的圆心在线段两点的圆的圆心在线段ABAB的垂直平分线上的垂直平分线上. .练习:练习: 如图,如图,CD所在的直线垂直平分线段所在的直线垂直平分线段AB,怎样用这样的工具找到圆形工件的圆心,怎样用这样的工具找到圆形工件的圆心DABCOA、B两点在圆上,所以圆心两点在圆上,所以圆心必与必与A、B两点的距离相等,两点的距离相等,又又和一条线段的两个端点距和一条线段的两个端点距离相等的点在这条线段的垂直离相等的点在这条线段的垂直平分线上,平分线上,所以圆心在所以圆心在CD所在的直线上,所在的直线上,因此可以做任意两条直径,它因此可以做任意两条直径,它们的交点为圆心们的交点为圆心.经过三角形三个顶点可以画一个圆,并且只能画一个一个三角形的外接圆有几个?一个三角形的外接圆有几个?一个圆的内接三角形有几个?一个圆的内接三角形有几个?经过三角形三个顶点的圆叫做三角形的外接圆。三角形的外心就是三角形三角形的外心就是三角形三条边的垂直平分三条边的垂直平分线的交点线的交点,它到三角形三个顶点的距离相等。,它到三角形三个顶点的距离相等。这个三角形叫做这个圆的这个三角形叫做这个圆的内接三角形内接三角形。三角形外接圆的圆心叫做这个三角形的外心。OABC 有关概念有关概念练习:练习: 任意四个点是不是可以画一个圆?请举例说明任意四个点是不是可以画一个圆?请举例说明. 不一定不一定1. 1. 四点在一条直线上不能作圆;四点在一条直线上不能作圆;四点中任意三点不在一条直线可能作圆也可能做四点中任意三点不在一条直线可能作圆也可能做不出一个圆不出一个圆.ABCDABCDABCDABCD2.2.三点在同一直线上三点在同一直线上, , 另一点不在这条直线上不能做圆;另一点不在这条直线上不能做圆; 分别画一个锐角三角形、直角三角形和钝角三角形,再画出它们的外接圆,观察并叙述各三角形与它的外心的位置关系. 做一做锐角三角形的外心位于三角形内,直角三角形的外心位于直角三角形斜边中点,钝角三角形的外心位于三角形外.ABCOABCCABOO能力提高 爆破时,导火索燃烧的速度是每秒爆破时,导火索燃烧的速度是每秒0.9cm,点导火索的人需要跑到离爆破点点导火索的人需要跑到离爆破点120m以外的以外的的安全区域,已知这个导火索的长度为的安全区域,已知这个导火索的长度为18cm,如果点导火索的人以每秒,如果点导火索的人以每秒6.5m的速度撤离,的速度撤离,那么是否安全?为什么?那么是否安全?为什么? 练一练 1、判断下列说法是否正确(1)任意的一个三角形一定有一个外接圆( ).(2)任意一个圆有且只有一个内接三角形( )(3)经过三点一定可以确定一个圆( )(4)三角形的外心到三角形各顶点的距离相等( ) 2、若一个三角形的外心在一边上,则此三角形的 形状为( ) A、锐角三角形 B、直角三角形 C、钝角三角形 D、等腰三角形B经过同一条直线三个点能作出一个圆吗?经过同一条直线三个点能作出一个圆吗?l1l2ABCP如图,假设过同一条直线如图,假设过同一条直线l上三点上三点A、B、C可以做一个圆,设这个圆的圆心为可以做一个圆,设这个圆的圆心为P. 活 动 五点点P既在线段既在线段AB的垂直平分线的垂直平分线1上,上,又在线段又在线段BC的垂直平分线的垂直平分线l2上,上,点点P为为L1与与L2的交点的交点L1AC,L2AC过同一条直线上的三点不能做圆过同一条直线上的三点不能做圆这与我们以前学过的这与我们以前学过的“过一点有且只有一条过一点有且只有一条直线与已知直线垂直相矛盾,直线与已知直线垂直相矛盾,L1L2上面的证明“过同一条直线上的三点不能做圆”的方法与我门以前学过的证明不同,它不是直接从命题的已知得结论,而是假设命题的结论不成立(即假设过同一条直线上的三点可以作一个圆),由此经过推理的出矛盾,由矛盾判定假设不正确,从而得到原命题成立,这种方法叫做反正法什么叫反证法什么叫反证法?这节课你学到了哪些知识?有这节课你学到了哪些知识?有什么感想什么感想? ? 回顾回顾与与思考思考24.224.224.224.2点和圆的位置关系点和圆的位置关系点和圆的位置关系点和圆的位置关系再再再再 见见见见
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号