资源预览内容
第1页 / 共28页
第2页 / 共28页
第3页 / 共28页
第4页 / 共28页
第5页 / 共28页
第6页 / 共28页
第7页 / 共28页
第8页 / 共28页
第9页 / 共28页
第10页 / 共28页
亲,该文档总共28页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
第三章第三章函数的连续性函数的连续性.一、函数的连续性一、函数的连续性1.函数的增量函数的增量.2.连续的定义连续的定义.例例1 1证证由定义由定义2知知.3.单侧连续单侧连续定理定理.例例2 2解解右连续但不左连续右连续但不左连续 ,.4.连续函数与连续区间连续函数与连续区间在区间上每一点都连续的函数在区间上每一点都连续的函数,叫做在该区间上叫做在该区间上的连续函数的连续函数,或者说函数在该区间上连续或者说函数在该区间上连续.连续函数的图形是一条连续而不间断的曲线连续函数的图形是一条连续而不间断的曲线.例如例如,.例例3 3证证.二、函数的间断点二、函数的间断点.1.跳跃间断点跳跃间断点例例4 4解解.2.可去间断点可去间断点例例5 5.解解注意注意 可去间断点只要改变或者补充间断处函可去间断点只要改变或者补充间断处函数的定义数的定义, , 则可使其变为连续点则可使其变为连续点. .如例如例5中中,跳跃间断点与可去间断点统称为第一类间断点跳跃间断点与可去间断点统称为第一类间断点. .特点特点.3.第二类间断点第二类间断点例例6 6解解.例例7 7解解注意注意 不要以为函数的间断点只是个别的几个点不要以为函数的间断点只是个别的几个点. .狄利克雷函数狄利克雷函数在定义域在定义域R内每一点处都间断内每一点处都间断,且都是第二类间且都是第二类间断点断点.仅在仅在x=0处连续处连续, 其余各点处处间断其余各点处处间断.在定义域在定义域 R内每一点处都间断内每一点处都间断, 但其绝对值处但其绝对值处处连续处连续.判断下列间断点类型判断下列间断点类型:.例例8 8解解.三、小结三、小结1.函数在一点连续必须满足的三个条件函数在一点连续必须满足的三个条件;3.间断点的分类与判别间断点的分类与判别;2.区间上的连续函数区间上的连续函数;第一类间断点第一类间断点:可去型可去型,跳跃型跳跃型.第二类间断点第二类间断点:无穷型无穷型,振荡型振荡型.间断点间断点(见下图见下图).可去型可去型第第一一类类间间断断点点oyx跳跃型跳跃型无穷型无穷型振荡型振荡型第第二二类类间间断断点点oyxoyxoyx.思考题思考题.思考题解答思考题解答且且.但反之不成立但反之不成立.例例但但.练练 习习 题题.练习题答案练习题答案.
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号