资源预览内容
第1页 / 共61页
第2页 / 共61页
第3页 / 共61页
第4页 / 共61页
第5页 / 共61页
第6页 / 共61页
第7页 / 共61页
第8页 / 共61页
第9页 / 共61页
第10页 / 共61页
亲,该文档总共61页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
10.1 晶体结构和类型第十章第十章 固体结构固体结构10.5 层状晶体10.4 分子晶体10.3 离子晶体10.2 金属晶体10.1.1 晶体结构的特征与晶格理论10.1 晶体结构和类型晶体结构和类型10.1.4 晶体类型10.1.3 非晶体 准晶体10.1.2 晶体缺陷10.1.1 晶体结构的特征与晶格理论1. 晶体结构的特征 晶体是由原子、离子或分子在空间按一定规律周期性地重复排列构成的固体。特征:(1) 晶体具有规则的多面体外形; (2) 晶体呈各向异性; (3) 晶体具有固定的熔点。 晶格(点阵)是晶体的数学抽象。2. 晶格理论的基本概念 由晶胞参数a,b,c,表示, a,b,c 为六面体边长, , 分别是bc , ca , ab 所组成的夹角。晶胞晶胞晶胞晶格中,能表现其结构一切特征 的最小部分黑色球组成的为该晶体的晶胞Cl-Cl-Na+Cl-Cl-Cl-Cl-Na+Na+Na+Na+ 晶胞的内容包括粒子的种类,数目及它在晶胞中的相对位置。 按晶胞参数的差异将晶体分成七种晶系。 按带心型式分类,将七大晶系分为14种型式。例如,立方晶系分为简单立方、体心立方和面心立方三种型式。晶体的分类10.1.4 晶体类型晶体类型10.2.1 金属晶体的结构10.2 金属晶体金属晶体10.2.2 金属键理论 金属晶体是金属原子或离子彼此靠金属键结合而成的。金属键没有方向性,金属晶体内原子以配位数高为特征。金属晶体的结构:等径球的密堆积。10.2.1 金属晶体的结构金属晶体的结构1.六方密堆积:hcp第三层与第一层对齐,产生ABAB方式。配位数:12, 空间占有率:74.05%2.面心立方密堆积:fcc 第三层与第一层有错位,以ABCABC方式排列。配位数:12, 空间占有率:74.05%3.体心立方堆积:bcc配位数:8空间占有率:68.02%金属晶体中粒子的排列方式常见的有三种:六方密堆积(Hexgonal close Packing);面心立方密堆积(Face-centred Cubic close Packing);体心立方堆积(Body-centred Cubic Packing)。密堆积层间的两类空隙 四面体空隙: 一层的三个球与上或下层密堆积的球间的空隙。 一层的三个球与错位排列的另一层三个球间的空隙。 八面体空隙:10.3.1 离子晶体的结构10.3 离子晶体离子晶体10.3.3 离子极化10.3.2 晶格能阴离子:大球,密堆积,形成空隙。阳离子:小球,填充空隙。 阴阳离子相互接触稳定; 配位数大,稳定。10.3.1 离子晶体的结构离子晶体的结构三种典型的AB型离子晶体NaCl型晶格:面心立方配位比:6:6(灰球Na+ , 绿球Cl-)晶胞中离子的个数:CsCl型晶胞中离子的个数:( 红球Cs+ , 绿球Cl-)晶格:简单立方配位比: 8:8晶胞中离子的个数:ZnS型(立方型)(灰球Zn2+ , 黄球S2-)配位比:4:4晶格:面心立方离子半径与配位数NaCl晶体NaCl晶体中一层横截面:理想的稳定结构(NaCl)配位数构型0.225 0.414 4ZnS 型0.414 0.732 6NaCl 型0.732 1.00 8CsCl 型 半径比规则 定义:在标准状态下,按下列化学反应计量式使离子晶体变为气体正离子和气态负离子时所吸收的能量称为晶格能,用U 表示。U10.3.2 晶格能晶格能MaXb(s) aMb+(g) + bXa-(g)(g)Cl+(g)NaNaCl(s)-+例如:1.Born-Haber循环K(g)Br (g)U-+KBr(s)+升华焓电离能气化热电子亲和能则:U =689.1kJmol-1=89.2kJmol-1=418.8kJmol-1=15.5kJmol-1=96.5kJmol-1=-324.7kJmol-1=-689.1kJmol-1=-393.8kJmol-1上述数据代入上式求得:+=2.Born-Lande公式 式中:R0正负离子核间距离,Z1,Z2 分别为正负离子电荷的绝对值,A Madelung常数,与晶体类型有关,n Born指数,与离子电子层结构类型有关。A的取值:CsCl型 A=1.763NaCl型 A=1.748ZnS型 A=1.638n的取值:影响晶格能的因素: 离子的电荷(晶体类型相同时) 离子的半径(晶体类型相同时) 晶体的结构类型(决定A的取值) 离子电子层结构类型(决定n的取值)Z,U 例:U(NaCl)U(CaO) 离子电荷数大,离子半径小的离子晶体晶格能大,相应表现为熔点高、硬度大等性能。晶格能对离子晶体物理性质的影响:描述一个离子对其他离子变形的影响能力。离子的极化力(f ):描述离子本身变形性的物理量。离子的极化率():10.3.3 离子极化离子极化1.离子的极化率() 离子半径 r : r 愈大, 愈大。如:Li+Na+K+Rb+Cs+;FClBr(Mg2+) 离子电荷:负离子电荷多的极化率大。 如:(S2) (Cl) 离子的电子层构型:(18+2)e-,18e- 917e-8e- 如:(Cd2+) (Ca2+); (Cu+) (Na+) r/pm 97 99 96 95 一般规律: 综上所述,下列离子的上所述,下列离子的变形性大小形性大小顺序序为:I Br Cl CN OH NO3 F ClO4 最容易最容易变形的离子是体形的离子是体积大的阴离子。大的阴离子。18 或(或(18 + 2)电子构型以及不子构型以及不规则电子子层的少的少电荷阳离子的荷阳离子的变形性形性也是相当大的。最不容易也是相当大的。最不容易变形的离子是半径小形的离子是半径小电荷高外荷高外层电子少的阳离子。子少的阳离子。 阳离子外电子层阳离子外电子层电子分布式电子分布式离子电离子电子构型子构型实例实例1s22(稀有稀有气体型气体型)Li+、Be2+ns2 np68(稀有稀有气体型气体型)Na+、Mg2+Al3+、Sc3+ 、Ti4+ns2 np6 nd1-9917Cr3+、Mn2+Fe2+、Fe3+ 、Cu2+ns2 np6 nd1018Ag+、Zn2+ 、Cd2+ Hg2+ 、Cu+(n-1)s2(n-1)p6 (n-1)d10 ns2 18+2Pb2+、Sn2+、Sb3+、Bi3+简单阴离子的电子构型:ns2np6 8电子构型2.离子极化力(f ) 离子半径 r :r 小者,极化力大。离子电荷:电荷多者,极化力大。离子的外层电子构型: f :(18+2)e-,18e- 917e- 8e- 当正负离子混合在一起时,着重考虑正离子的极化力,负离子的极化率,但是18e构型的正离子(Ag+, Cd2+ 等)也要考虑其变形性。一般规律:离子电子构型离子电子构型18+2、18、29178极化力极化力实例实例Ag+、Cu+ 、Hg2+Sn2+、Pb2+、Bi3+Li+ 、Be2+Cr3+、 Fe2+ Mn2+、Cu2+Na+、Sc3+Mg2+Al3+ 3.离子极化的结果 键型过渡(离子键向共价键过渡)如:AgF AgCl AgBr AgI核间距缩短。离子键共价键卤化银卤化银AgFAgClAgBrAgI卤素离子半径卤素离子半径/pm136181195216阳、阴离子半径和阳、阴离子半径和/pm262307321342实测键长实测键长/pm246277288299键型键型离子键离子键过渡键型过渡键型共价键共价键 晶型改变 AgCl AgBr AgIr+/r- 0.695 0.63 0.58 理论上晶型 NaCl NaCl NaCl实际上晶型 NaCl NaCl ZnS配位数 6 6 4 性质改变 (1)化合物的溶解性与晶格能、水合能、键能等许多因素有关,一般离子化合物易溶于水。离子极化作用的结果使离子键向共价键过渡,导致化合物在水中的溶解度降低。例如;溶解度 AgCl AgBr AgI 在银的卤化物中,由于 F- 离子半径很小,不易发生变形,所以 AgF 是离子化合物,它可溶于水。而对于AgCl、AgBr 和 AgI,随着 Cl-、Br- 和I- 离子的半径依次增大,变形性也随之增大。Ag+ 离子的极化能力很强,所以这三种化合物都具有较大的共价性。AgCl、AgBr 和 AgI 的共价程度依次增大,故溶解度依次减小。NaCl 易溶于水,CuCl 难溶于水。 卤化物卤化物NaClCuClM+离子电荷离子电荷+1+1r+/pm9596M+离子电子构型离子电子构型818M+的极化力的极化力小小大大溶解度溶解度易溶于水易溶于水难溶于水难溶于水(2) 化合物的颜色 离子极化作用是影响化合物颜色的重要因素之一。一般情况下,如果组成化合物的两种离子都是无色的,化合物也无色,如 NaCl、KNO3 等。如果其中一个离子是无色的,另一个离子有颜色,则这个离子的颜色就是该化合物的颜色,如 K2CrO4呈黄色。 但比较 Ag2CrO4 和 K2CrO4 时发现,Ag2CrO4 呈红色而不是黄色。再比较一下 AgI 和 KI,AgI 是黄色而不是无色。这与 Ag+ 离子具有较强的极化作用有关。因为极化作用导致电子从阴离子向阳离子迁移变得容易了,只要吸收可见光部分的能量就可以完成,从而呈现颜色。(3) 化合物的熔点和沸点 如 AgCl 和 NaCl,两者晶型相同,但 Ag+ 离子的极化能力大于 Na+ 离子,导致键型不同,所以 AgCl 的熔点是 728 K,而 NaCl 的熔点是 1074 K。又如 HgCl2,Hg2+ 是 18 电子构型,极化能力强,又有较大的变形性,Cl- 也具有一定的变形性,离子的相互极化作用使 HgCl2 的化学键有显著的共价性,因此 HgCl2的熔点为 550 K,沸点为 577 K,都较低。 离子极化作用的结果,使离子键向共价键过渡,引起晶格能降低,导致化合物的熔点和沸点降低。思考题:解释碱土金属氯化物的熔点变化规律:熔点/405 714 782 876 96210.4.1 分子的偶极矩和极化率10.4 分子晶体分子晶体10.4.3 氢键10.4.2 分子间的吸引作用1.分子的偶极矩():用于定量地表示极性 分子的极性大小。极性分子 0非极性分子=0双原子分子:多原子分子:同核:O3(V字形)式中 q 为极上所带电量,l 为偶极长度。10.4.1 分子的偶极矩和极化率分子的偶极矩和极化率异核:HX分子的偶极矩与键矩的关系:极性键构成的双原子分子: 分子偶极矩 = 键矩多原子分子的偶极矩 = 键矩的矢量和,例如:(SF6) = 0,键矩互相抵消, (H2O)0,键矩未能抵消。分子的偶极矩(1030 Cm)2.分子的极化率: 用于定量地表示分子的变形性大小。分子的变形性大小指的是正电中心与负电中心发生位移(由重合变不重合,由偶极长度小变偶极长度大) 。外因:外加电场愈强,分子变形愈厉害;内因:分子愈大,分子变形愈厉害。影响分子变形性大小的因素:分子的极化率(1040Cm2 V1)非极性分子的瞬时偶极之间的相互作用 分子间具有吸引作用的根本原因:任何分子都有正、负电中心;任何分子都有变形的性能。由于瞬时偶极而产生的分子间相互作用。10.4.2 分子间的吸引作用分子间的吸引作用1.色散作用(色散力):一大段时间内的大体情况色散力与分子极化率有关。大,色散力大。每一瞬间2.诱导作用(诱导力):决定诱导作用强弱的因素: 极性分子的偶极矩: 愈大,诱导作用愈强。 非极性分子的极化率: 愈大,诱导作用愈强。由于诱导偶极而产生的分子间相互作用。分子离得较远分子靠近时 两个极性分子相互靠近时,由于同极相斥、异极相吸,分子发生转动,并按异极相邻状态取向,分子进一步相互靠近。3.取向作用(取向力): 两个固有偶极间存在的同极相斥、异极相吸的定向作用称为取向作用。分子离得较远 取向诱导思考:1.取向作用的大小取决于什么因素?2.极性分子之间除了有取向作用以外,还有什么作用? 分子间力是三种吸引力的总称,其大小一般为几 kJmol1,比化学键小 12 个数量级。分子间的吸引作用(1022 J)分子间力的特点: 不同情况下,分子间力的组成不同。例如,非极性分子之间只有色散力;极性分子之间有三种力,并以色散力为主,仅仅极性很大的H2O 分子例外。 分子间力作用的范围很小(一般是300500pm)。 分子间作用力较弱,既无方向性又无饱和性。分子量色散作用分子间力沸点熔点水中溶解度HeNeAr Kr Xe小大小大小大小大低高小大 决定物质的熔、沸点、气化热、熔化热、蒸气压、溶解度及表面张力等物理性质的重要因素。分子间力的意义:10.4.3 氢键氢键 HF HCl HBr HI沸点/0C 85.0 66.7 35.419.9极化率 小 大色散作用 弱 强沸点 低 高HF为何反常的高?原因存在氢键。 HF 分子中,共用电子对强烈偏向电负性大的 F 原子一侧。在几乎裸露的 H 原子核与另一个 HF 分子中 F 原子的某一孤对电子之间产生的吸引作用称为氢键。氢键的形成条件:分子中有H和电负性大、半径小且有孤对电子的元素(F ,O,N)形成氢键。 键长特殊:FH F 270pm 键能小 E(FH F) 28kJmol1 具有饱和性和方向性氢键的特点: 除了HF、H2O、NH3 有分子间氢键外,在有机羧酸、醇、酚、胺、氨基酸和蛋白质中也有氢键的存在。例如:甲酸靠氢键形成二聚体。HCOOHHOOHC 除了分子间氢键外,还有分子内氢键。例如,硝酸的分子内氢键使其熔、沸点较低。石墨具有层状结构,称为层状晶体。10.5 层状晶体层状晶体层间为分子间力 同一层:CC 键长为142pm,C 原子采用 sp2 杂化轨道,与周围三个 C 原子形成三个键,键角为 1200,每个 C 原子还有一个 2p 轨道,垂直于sp2 杂化轨道平面,2p 电子参与形成了键,这种包含着很多原子的键称为大键。 层与层间:距离为 340pm,靠分子间力结合起来。 石墨晶体既有共价键,又有分子间力,是混合键型的晶体。思考: 石墨具有良好的导电传热性,又常用作润滑剂,各与什么结构有关?
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号