资源预览内容
第1页 / 共12页
第2页 / 共12页
第3页 / 共12页
第4页 / 共12页
第5页 / 共12页
第6页 / 共12页
第7页 / 共12页
第8页 / 共12页
第9页 / 共12页
第10页 / 共12页
亲,该文档总共12页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
第二章第二章 参数方程参数方程椭圆的参数方程椭圆的参数方程第二章第二章 参数方程参数方程例例1、如下图,以原点为圆心,分别以如下图,以原点为圆心,分别以a,b(ab0)为半径作两个圆,点为半径作两个圆,点B是大圆半径是大圆半径OA与小圆的交点,过与小圆的交点,过点点A作作ANox,垂足为垂足为N,过点过点B作作BMAN,垂足为垂足为M,求当半径求当半径OA绕点绕点O旋转时点旋转时点M的轨迹参数方程的轨迹参数方程. OAMxyNB分析:分析:点点M的横坐标与点的横坐标与点A的横坐标相同的横坐标相同,点点M的纵坐标与点的纵坐标与点B的纵坐标相同的纵坐标相同. 而而A、B的坐标可以通过的坐标可以通过引进参数建立联系引进参数建立联系. 设设XOA=第二章第二章 参数方程参数方程例例1、如下图,以原点为圆心,分别以如下图,以原点为圆心,分别以a,b(ab0)为半径作两个圆,点为半径作两个圆,点B是大圆半径是大圆半径OA与小圆的交点,过与小圆的交点,过点点A作作ANox,垂足为垂足为N,过点过点B作作BMAN,垂足为垂足为M,求当半径求当半径OA绕点绕点O旋转时点旋转时点M的轨迹参数方程的轨迹参数方程. OAMxyNB解:解:设设XOA=, M(x, y), 则则A: (acos, a sin),B: (bcos, bsin),由已知由已知:即为即为点点M M的轨迹的轨迹参数方程参数方程. .消去参数得消去参数得: :即为即为点点M M的轨迹的轨迹普通普通方程方程. .第二章第二章 参数方程参数方程1 .参数方程参数方程 是椭圆的参是椭圆的参 数方程数方程.2 .在椭圆的参数方程中,常数在椭圆的参数方程中,常数a、b分分别是椭圆的长半轴长和短半轴长别是椭圆的长半轴长和短半轴长. ab另外另外, 称为称为离心角离心角,规定参数规定参数的取值范围是的取值范围是第二章第二章 参数方程参数方程OAMxyNB知识归纳知识归纳椭圆的标准方程椭圆的标准方程: :椭圆的参数方程中参数椭圆的参数方程中参数的几何意义的几何意义: :xyO圆的标准方程圆的标准方程: :圆的参数方程圆的参数方程: : x2+y2=r2的几何意义是的几何意义是AOP=PA椭圆的参数方程椭圆的参数方程: :是是AOX=,不是不是MOX=.第二章第二章 参数方程参数方程【练习练习1】把下列普通方程化为参数方程把下列普通方程化为参数方程. (1)(2)(3)(4)把下列参数方程化为普通方程把下列参数方程化为普通方程第二章第二章 参数方程参数方程练习练习2:已知椭圆的参数方程为已知椭圆的参数方程为 ( 是是参数参数) ,则此椭圆的长轴长为(,则此椭圆的长轴长为( ),短轴长为(),短轴长为( ),焦点坐标是(),焦点坐标是( ),离心率是(),离心率是( )。)。42( , 0)第二章第二章 参数方程参数方程例例2、如图,在椭圆如图,在椭圆x2+8y2=8上求一点上求一点P,使,使P到直线到直线 l:x-y+4=0的距离最小的距离最小.xyOP分析分析1:分析分析2:分析分析3:平移直线平移直线 l 至首次与椭圆相切,切点即为所求至首次与椭圆相切,切点即为所求.小结:小结:借助椭圆的参数方程,可以将椭圆上的任意一借助椭圆的参数方程,可以将椭圆上的任意一点的坐标用三角函数表示,利用三角知识加以解决。点的坐标用三角函数表示,利用三角知识加以解决。第二章第二章 参数方程参数方程例例3、已知椭圆已知椭圆 有一内接矩形有一内接矩形ABCD,求矩形求矩形ABCD的最大面积。的最大面积。yXOA2A1B1B2F1F2ABCDYX第二章第二章 参数方程参数方程练习练习3:已知已知A,B两点是两点是椭圆椭圆 与坐标轴正半轴的两个交点与坐标轴正半轴的两个交点,在第一象限的椭在第一象限的椭圆弧上求一点圆弧上求一点P,使使四边形四边形OAPB的面积最大的面积最大.第二章第二章 参数方程参数方程练习练习41、动点、动点P(x,y)在曲线在曲线 上变化上变化 ,求,求2x+3y的最大的最大值和最小值值和最小值2、取一切实数时,连接取一切实数时,连接A(4sin,6cos)和和B(-4cos, 6sin)两点的线段的中点轨迹是两点的线段的中点轨迹是 . A. 圆圆 B. 椭圆椭圆 C. 直线直线 D. 线段线段B设中点设中点M (x, y)x=2sin-2cosy=3cos+3sin第二章第二章 参数方程参数方程
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号