资源预览内容
第1页 / 共23页
第2页 / 共23页
第3页 / 共23页
第4页 / 共23页
第5页 / 共23页
第6页 / 共23页
第7页 / 共23页
第8页 / 共23页
第9页 / 共23页
第10页 / 共23页
亲,该文档总共23页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
2.1.1平面1 1、掌握平面的表示法及水平放置的直观、掌握平面的表示法及水平放置的直观图;图;2 2、会用符号表示出点与直线、会用符号表示出点与直线, ,点与平面点与平面, ,直线和平面以及平面与平面相交的位置关直线和平面以及平面与平面相交的位置关系;系;3 3、掌握平面的基本性质、掌握平面的基本性质( (三个公理三个公理) )及作及作用;用;4 4、培养学生的空间想象能力。、培养学生的空间想象能力。教学目标教学目标实物引入、揭示课题实物引入、揭示课题同学们观察同学们观察长方体长方体并思并思考以下问题:考以下问题:1 1、长方体由哪些基本元素构、长方体由哪些基本元素构成成? ?2 2、观察长方体的面、观察长方体的面, ,说说说说它的特点?它的特点?答:点、线、面答:点、线、面答:答: 长方体由上下、前后、左右六个长方体由上下、前后、左右六个面围成面围成它们都它们都是平的是平的。长方体的面给我们以平面的印象;生活中常长方体的面给我们以平面的印象;生活中常见的如黑板、平整的操场、桌面、平静的湖见的如黑板、平整的操场、桌面、平静的湖面等等,都给我们以平面的印象。面等等,都给我们以平面的印象。实物引入、揭示课题实物引入、揭示课题1 1、平面的含义平面的含义以上实物都给我们以平面的印象,几何里所以上实物都给我们以平面的印象,几何里所说的平面,就是从这样的一些物体中抽象出说的平面,就是从这样的一些物体中抽象出来的。来的。平面是没有厚薄的,可以无限延伸,平面是没有厚薄的,可以无限延伸,这是平面最基本的属性这是平面最基本的属性。常见的桌面,黑板面,平静的水面等都是平常见的桌面,黑板面,平静的水面等都是平面的局部形象;面的局部形象;一个平面把空间分成两部分,一个平面把空间分成两部分,一条直线把平面分成两部分一条直线把平面分成两部分2 2、平面的画法及表示、平面的画法及表示平面的画法:平面的画法:在立体几何中,常用平行四边在立体几何中,常用平行四边形表示平面,当平面水平放置形表示平面,当平面水平放置时,通常把平行四边形的锐角时,通常把平行四边形的锐角画成画成45450 0,且横边长画成邻边长,且横边长画成邻边长的两倍;的两倍;DCAB画两个平面相交时,当一个画两个平面相交时,当一个平面的一部分被另一个平面平面的一部分被另一个平面遮住时,应把被遮住的部分遮住时,应把被遮住的部分画成虚线或不画。画成虚线或不画。、平面的表示方法、平面的表示方法DCAB平面平面ABCD平面平面AC或平面或平面BDADCBEF平面平面记作:记作:平面平面记作:记作:平面平面 常把希腊字母常把希腊字母、等写在代表平面的平行四等写在代表平面的平行四边形的一个角上,如平面边形的一个角上,如平面、平面、平面等;也可以用等;也可以用代表平面的四边形的四个顶点,或者相对的两个代表平面的四边形的四个顶点,或者相对的两个顶点的大写英文字母作为这个平面的名称顶点的大写英文字母作为这个平面的名称3 3、点、直线与平面的关系、点、直线与平面的关系平面内有无数个点,平面可以看成点的集合平面内有无数个点,平面可以看成点的集合. .AB点点A A在平面在平面内,记作内,记作AABA.m点点B在平面在平面外,外,记作记作B 直线直线l在平面在平面内表示为内表示为 l 直线直线l不不在平面在平面内表示内表示为为 l 1、判断下列各题的说法正确与否,在正、判断下列各题的说法正确与否,在正确的说法的题号后打确的说法的题号后打 ,否则打,否则打 :1、一个平面长、一个平面长 4 米,宽米,宽 2 米;米; ( )2、平面有边界;、平面有边界; ( )3、一个平面的面积是、一个平面的面积是 25 cm 2; ( )4、菱形的面积是可以计算的;、菱形的面积是可以计算的; ( )5、一个平面可以把空间分成两部分、一个平面可以把空间分成两部分. ( )练习练习4 4、平面的基本性质、平面的基本性质如果直线如果直线 l 与平面与平面有一有一个公共点,直线个公共点,直线 l 是否在是否在平面平面内?如果直线内?如果直线 l 与与平面平面有两个公共点呢?有两个公共点呢?实际生活中,我们有这实际生活中,我们有这样的经验:把一根直尺样的经验:把一根直尺边缘上的任意两点放到边缘上的任意两点放到桌面上,可以看到,直桌面上,可以看到,直尺的整个边缘就落在了尺的整个边缘就落在了桌面上桌面上图形语言图形语言符号语言符号语言BA.公理公理1 1:如果一条直线上的两点在一个平面内,:如果一条直线上的两点在一个平面内, 那么这条直线在此平面内那么这条直线在此平面内. .用途用途: :可以用来判断直线是否在平面内可以用来判断直线是否在平面内. .4 4、平面的基本性质、平面的基本性质 在生产、生在生产、生活中,人们经过活中,人们经过长期观察与实践,长期观察与实践,总结出关于平面总结出关于平面的一些基本性质,的一些基本性质,我们把它作为公我们把它作为公理这些公理是理这些公理是进一步推理的基进一步推理的基础础生活中经常看到用三角架支撑照相机或生活中经常看到用三角架支撑照相机或测量用的平板仪等等测量用的平板仪等等4 4、平面的基本性质、平面的基本性质公理公理2 2 过不在一条直线上的三点,有且只有一个过不在一条直线上的三点,有且只有一个平面平面ACB存在性存在性唯一性唯一性作用:作用: 确定平面的主要依据确定平面的主要依据 不再一条直线上的三个点不再一条直线上的三个点A、B、C所确定所确定的平面,可以记成的平面,可以记成“平面平面ABC”4 4、平面的基本性质、平面的基本性质补充补充3 3个推论:个推论:4 4、平面的基本性质、平面的基本性质推论推论1 1:经过:经过一条直线与直线外一点一条直线与直线外一点,有,有且只有一个平面。且只有一个平面。推论推论2 2:经过:经过两条平行直线两条平行直线,有且只有一,有且只有一个平面。个平面。推论推论3 3:经过:经过两条相交直线两条相交直线,有且只有一,有且只有一个平面。个平面。B 把三角板的一个角立在课桌面上,三角板所把三角板的一个角立在课桌面上,三角板所在平面与桌面所在平面是否只相交于一点在平面与桌面所在平面是否只相交于一点B B ?为什么为什么?4 4、平面的基本性质、平面的基本性质 观察长方体,你能发现长方体的两个相交平观察长方体,你能发现长方体的两个相交平面有没有公共直线吗?面有没有公共直线吗? 这条公共直线这条公共直线BC叫做这两叫做这两个平面个平面ABCD和平面和平面BBCC的的交线交线 另一方面,相邻两个平面有另一方面,相邻两个平面有一个公共点,如平面一个公共点,如平面ABCD和和平面平面BBCC有一个公共点有一个公共点B,经,经过点过点B有且只有一条过该点的公有且只有一条过该点的公共直线共直线BC.4 4、平面的基本性质、平面的基本性质公理公理3 3 如果两个不重合的平面有一个公共点,如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线那么它们有且只有一条过该点的公共直线作用:作用:判断两个平面相交的依据判断两个平面相交的依据判断点在直线上判断点在直线上lP4 4、平面的基本性质、平面的基本性质符号表示为符号表示为:图形表示为图形表示为:例例1 1 如图,用符号表示下列图形中点、直线、平如图,用符号表示下列图形中点、直线、平面之间的位置关系面之间的位置关系alABalPb(1)(2)解:在(解:在(1 1)中,)中,在(在(2 2)中,)中,例题例题示范示范课堂练习:课本课堂练习:课本P44P44练习练习1 1、2 2、3 3、4 4补补练:练:有三个公共点的两个平面重合有三个公共点的两个平面重合梯形的四个顶点在同一个平面内梯形的四个顶点在同一个平面内三条互相平行的直线必共面三条互相平行的直线必共面 四条线段顺次首尾连接,构成平面图形四条线段顺次首尾连接,构成平面图形2 2、下列命题正确的是、下列命题正确的是 ( )A A、两条直线可以确定一个平面、两条直线可以确定一个平面B B、一条直线和一个点可以确定一个平面、一条直线和一个点可以确定一个平面C C、空间不同的三点可以确定一个平面、空间不同的三点可以确定一个平面D D、两条相交直线可以确定一个平面、两条相交直线可以确定一个平面1、下列命题中,正确的命题是、下列命题中,正确的命题是( )A A、圆上三点可以确定一个平面、圆上三点可以确定一个平面B B、圆心和圆上两点可确定一个平面、圆心和圆上两点可确定一个平面C C、四条平行直线不能确定五个平面、四条平行直线不能确定五个平面D D、空间四点中,若四点不共面,则任意三点不共线、空间四点中,若四点不共面,则任意三点不共线4 4、若给定空间三条直线共面的条件,这四个条、若给定空间三条直线共面的条件,这四个条 件中不正确的是件中不正确的是( )三条直线两两相交三条直线两两相交 三条直线两两平行三条直线两两平行 三条直线中有两条三条直线中有两条 平行三条直线共点平行三条直线共点3 3、在空间中,下列命题错误的是(、在空间中,下列命题错误的是( )5 5、根据下列条件画出图形:平面、根据下列条件画出图形:平面平面平面=AB=AB 直线直线a a, ,直线直线b b,a,aAB,bAB,bABAB 6 6、如图、如图、A A, ,直线直线ABAB和和ACAC不在不在内,画出内,画出ABAB和和ACAC所确定的平面所确定的平面,并画出直线,并画出直线BCBC和平面和平面的的交点交点. . BCA课时小结:课时小结:(师生互动,共同归纳)(师生互动,共同归纳)(1 1)本节课我们学习了哪些知识内容?)本节课我们学习了哪些知识内容?(2 2)三个公理的内容及作用是什么?)三个公理的内容及作用是什么?作业布置作业布置: : P52P52习题习题2.1A2.1A组组1 1、2 2题题
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号