资源预览内容
第1页 / 共38页
第2页 / 共38页
第3页 / 共38页
第4页 / 共38页
第5页 / 共38页
第6页 / 共38页
第7页 / 共38页
第8页 / 共38页
第9页 / 共38页
第10页 / 共38页
亲,该文档总共38页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
Operations Research Operations Research Prof. Wang Prof. Wang School of Economics & ManagementSchool of Economics & Managementpage page 1 19/17/20249/17/2024第七、八讲第四讲 单纯型表格算法单纯型表格算法 1与基础解对应的单纯型表格 2新基础解表格与原表格的关系3如何选择支点行4如何选择支点列5举例分析Operations Research Operations Research Prof. Wang Prof. Wang School of Economics & ManagementSchool of Economics & Managementpage page 2 29/17/20249/17/2024第七、八讲1 与基础解对应的单纯型表格(1) 关于单纯形法概念,以前已讲过,本章讲具体计算步骤。该计算方法在计算机上计算。令A为mn矩阵,mn,行线性独立,即秩为m。非退化线性规划的标准形式为:AX=b,X0,CTX=min(1) 如果b是A的不少于m列的线性组合,则称非退化形式。设从 阶段2开始计算,即设已获得初始可行解X(这需阶段1,而 寻找第1个初始可行解亦需用到阶段2算法)。Operations Research Operations Research Prof. Wang Prof. Wang School of Economics & ManagementSchool of Economics & Managementpage page 3 39/17/20249/17/2024第七、八讲1 与基础解对应的单纯型表格(2) 设已有一个基础可行解X,只依赖于m列aj(j=1,m),则有xj0,jB,B=j1,jm(2)令矢量Vi=aji(i=1,2,m)(3)则,V1,V2,Vm即是当前基础矩阵M的列矢量。现把A阵每一列都用基础列表达:aj=t1jV1+t2jV2+tmjVm(j=1,2,n)(4)同样,b可写成:b=t10V1+t20V2+tm0Vm(5)这样,便可给出一个单纯形表格(tij),i=1,m;j=1,2,n,0(6)Operations Research Operations Research Prof. Wang Prof. Wang School of Economics & ManagementSchool of Economics & Managementpage page 4 49/17/20249/17/2024第七、八讲1 与基础解对应的单纯型表格(3) 例1-18A =b = 令当前基础矢量是第3列和第1列。即V1=a3,V2=a1,则表格为:a1a2a3bV1=a30111V2=a11-102Operations Research Operations Research Prof. Wang Prof. Wang School of Economics & ManagementSchool of Economics & Managementpage page 5 59/17/20249/17/2024第七、八讲1 与基础解对应的单纯型表格(4) 第2列即为:a3a1=a2(8)最后1列为:a3+2a1=b(9)这就给出基础解分量 x3=1,x1=2,x2=0扩充单纯形表格:前述表格中的元素仅是把A阵矢量和b表达为基础矢量线性组合时的系数,为方便,现又增加uij, 其 含 义 是 把 m个 单 位 矢 量 e1(1,0,0,),e2(0,1,0,),em(0,0,1)表达成基本矢量的线性组合,即:ej =(j=1,2,m)(10)Operations Research Operations Research Prof. Wang Prof. Wang School of Economics & ManagementSchool of Economics & Managementpage page 6 69/17/20249/17/2024第七、八讲1 与基础解对应的单纯型表格(5) 于是,扩充的单纯形表格如下:因为单位矢量ej(j=1,m)构成一个标准单位矩阵I,而Vi是基础矩阵M的列,根据式(10)知,I=MUU=M1。因此扩充表格中的uij是当前基础阵之逆阵。a1anbe1emV1t11t1nt10u11u1m-Vmtm1tmntm0um1ummOperations Research Operations Research Prof. Wang Prof. Wang School of Economics & ManagementSchool of Economics & Managementpage page 7 79/17/20249/17/2024第七、八讲1 与基础解对应的单纯型表格(6) 同样式(4)和(5)也可写成矩阵的形式:A,b=MT(13)其中,T=tij(i=1,m,j=1,n,0),于是扩充表格可写成:T;U=M1A,b;I(14)例1-19例1-18的基础矩阵为: M =a3,a1=Operations Research Operations Research Prof. Wang Prof. Wang School of Economics & ManagementSchool of Economics & Managementpage page 8 89/17/20249/17/2024第七、八讲1 与基础解对应的单纯型表格(7) 因此, U=M1=uij则扩充表格为:(15)a1a2a3be1e2V1=a301113-2V2=a11-102-75一二三Operations Research Operations Research Prof. Wang Prof. Wang School of Economics & ManagementSchool of Economics & Managementpage page 9 99/17/20249/17/2024第七、八讲1 与基础解对应的单纯型表格(8) 表格中,第一部分为A阵所有列关于当前基础列之表达式。第二部分为当前基础解的正分量。第三部分为当前基础阵之逆阵。Operations Research Operations Research Prof. Wang Prof. Wang School of Economics & ManagementSchool of Economics & Managementpage page 10109/17/20249/17/2024第七、八讲2 新基础解表格与原表格的关系(1) 设在上述基础解的基础上,将非基矢量as引进基础解集,即asB集;而令原基础解集B中的Vr处原基矢量离开。这两种情况表达形式示于表1-3和表1-4表1-3原表格(用当前基础解表达矢量)a1asanbe1emV1t11t1st1nt10u11u1mVrtr1trstrntr0ur1urmVmtm1tmstmntm0um1ummOperations Research Operations Research Prof. Wang Prof. Wang School of Economics & ManagementSchool of Economics & Managementpage page 11119/17/20249/17/2024第七、八讲2 新基础解表格与原表格的关系(2) 表1-4新表格(用新基础解表达矢量)a1asanbe1em(V1)t11t1st1nt10u11u1mas(Vr)tr1trstrntr0ur1urm(Vm)tm1tmstmntm0um1ummOperations Research Operations Research Prof. Wang Prof. Wang School of Economics & ManagementSchool of Economics & Managementpage page 12129/17/20249/17/2024第七、八讲2 新基础解表格与原表格的关系(3) 其中原表格是已经给出的与当前基础矢量相对应的单纯形表格,新基础解是由原非基矢量as代入Vr所致。其新解所对应的表格形式如表1-4所示,那么新表中各个元素如何根据原表1-3求出呢?现在就对该问题进行推导。因为当前基础解和新基础解都假定是可行的非退化解,因此两表中:ti00,ti00(i=1,2,m)(16)Operations Research Operations Research Prof. Wang Prof. Wang School of Economics & ManagementSchool of Economics & Managementpage page 13139/17/20249/17/2024第七、八讲2 新基础解表格与原表格的关系(4) 则,当前基础可行解满足:AX=(17)因此,ti0就是X的正分量根据当前基础解来表达as:as=t1sV1+trsVr+tmsVm (18)由于基础矢量V1,Vr,Vm线性无关,因此trs0;Operations Research Operations Research Prof. Wang Prof. Wang School of Economics & ManagementSchool of Economics & Managementpage page 14149/17/20249/17/2024第七、八讲2 新基础解表格与原表格的关系(5) 否则,从式(18)中说明,as可由Vi(i=1,m,ir)线性组合,这说明新基础解不是线性无关的矢量构成,与假设矛盾。于是,Vr可根据式(18)表达为: Vr= (19)从假设知,新基础解基础矢量为:(V1)=V1,(Vr)=as,(Vm)=Vm(20)为获得新表格,系数tij应满足:Operations Research Operations Research Prof. Wang Prof. Wang School of Economics & ManagementSchool of Economics & Managementpage page 15159/17/20249/17/2024第七、八讲2 新基础解表格与原表格的关系(6) aj=t1j(V1)+trj(Vr)+tmj(Vm)这表明aj =trjas+(21)(式中,表示,下同)这唯一地定义了新表格中的系数。而根据当前基础解,存在: aj =trjVr+(22)Operations Research Operations Research Prof. Wang Prof. Wang School of Economics & ManagementSchool of Economics & Managementpage page 16169/17/20249/17/2024第七、八讲2 新基础解表格与原表格的关系(7) 现在,把Vr用式(19)代入,则式(22)变为: aj =(23)将aj的两个表达式(21)和(23)的矢量系数加以比较,便可得出下述关系:当i=r时,trj=trj/trs (24)当ir时,tij=tij(tis/trs)trj (25)Operations Research Operations Research Prof. Wang Prof. Wang School of Economics & ManagementSchool of Economics & Managementpage page 17179/17/20249/17/2024第七、八讲2 新基础解表格与原表格的关系(8) 对于扩充表格右边系数uij的表达更没问题。可把单位矢量ej作为扩充矩阵A,I的列,就像阶段法1做的那样,可设:e1=an+1,e2=an+2,em=an+m(26)于是,我们可定义:uij=ti,,n+j(i,j=1,2,m)(27)在式(24)和(25)中,用n+j代替j可得当i=r时,urj=urj/trs (28)当ir时,uij=uij(tis/trs)urj (29)Operations Research Operations Research Prof. Wang Prof. Wang School of Economics & ManagementSchool of Economics & Managementpage page 18189/17/20249/17/2024第七、八讲2 新基础解表格与原表格的关系(9) 上述公式的含义如下:如果用as代替Vr而形成新基础可行解,则称原表中的r行为支点行原表中的s列为支点列trs为支点元素支点行(r):新表r行原表r行/trs非支点行(i):新表i行=原表i行i(原表r行)Operations Research Operations Research Prof. Wang Prof. Wang School of Economics & ManagementSchool of Economics & Managementpage page 19199/17/20249/17/2024第七、八讲2 新基础解表格与原表格的关系(10) 从上所述,如果知道原表格的支点行和支点列,那么,新的表格便可应孕而生。于是如何选择支点行和支点列便是单纯形表格的关键问题,下面就分别阐述这两个问题。Operations Research Operations Research Prof. Wang Prof. Wang School of Economics & ManagementSchool of Economics & Managementpage page 20209/17/20249/17/2024第七、八讲3 如何选择支点行 选择支点行即是假设支点列已选定(即已知道应引进的非基础矢量),应令哪一个基础矢量离开的问题。支点行的选择原则是新解可行,即新表格中的ti0(i=1,m)0(对于非退化)。即,若r行被选中,则必须满足:tr0/trs=minti0/tis:tis0,i=1,m这就是r行被中的充分必要条件,对于非退化情况,r行能被唯一确定。Operations Research Operations Research Prof. Wang Prof. Wang School of Economics & ManagementSchool of Economics & Managementpage page 21219/17/20249/17/2024第七、八讲4 如何选择支点列 (1) 在选择支点行之前,必须首先选择支点列,其原则是,新矢量进入基础解使费用尽量小,即最优性选择。旧费用为: CTX=(32)表明基础矢量Vi的单位费用。如果决定选支点列s,那么新的解的费用是多少呢?根据: as =0 (33) 及 = AX = b (34)Operations Research Operations Research Prof. Wang Prof. Wang School of Economics & ManagementSchool of Economics & Managementpage page 22229/17/20249/17/2024第七、八讲4 如何选择支点列 (2) 将(33)式乘以再加(34)式得:as+(35)于是,得出一组新解,其新解的费用为:cs +(36)而 =旧费用,令 (37)故 新费用=旧费用(zscs) (38)Operations Research Operations Research Prof. Wang Prof. Wang School of Economics & ManagementSchool of Economics & Managementpage page 23239/17/20249/17/2024第七、八讲4 如何选择支点列 (3) 即,要使费用减少,只有zscs0才行,这和在第五节所得结论一致。即可得出下述结论:从式(35)看出,若所有tis0,则当时,X()永远可行,若此时,zscs0,则最优目标值无界,即可无穷小。若zscs0且至少有一个tis0,则s列是被选中之一,若有若干列的zscs0,则通常选择最大的zscs作为支点列,然后根据前面讲的选择支点行标准选取支点元素并构成新的表格。Operations Research Operations Research Prof. Wang Prof. Wang School of Economics & ManagementSchool of Economics & Managementpage page 24249/17/20249/17/2024第七、八讲4 如何选择支点列 (4) 当选中s列作为支点列时,其新费用减少值为*(zscs),其中,*是新基础解中as的系数。(as=(vr)),我们有:*=tr0=tr0/trs如果,旧费用为z0,新费用为z0,则有 z0=z0tr0(39)对于原扩充表格:T;U=M1A,b;I,显然缺少一些信息,即检验数信息,现可把它放在表格最后一行:z1c1,,zncn,z0;y1,ym(40)Operations Research Operations Research Prof. Wang Prof. Wang School of Economics & ManagementSchool of Economics & Managementpage page 25259/17/20249/17/2024第七、八讲4 如何选择支点列 (5) 这一行称为判断行或检验行。该行各元素含义如下:前n个元素之表达式为 zjcj= (j=1,n)(41)如果aj是当前基础解集,则:zjcj=0如果aj不是当前基础解集,则:元素z0是当前费用,(42)Operations Research Operations Research Prof. Wang Prof. Wang School of Economics & ManagementSchool of Economics & Managementpage page 26269/17/20249/17/2024第七、八讲4 如何选择支点列 (6) 最后m个元素定义为:(j=1,m) (43)其中uij=U是基础阵M之逆阵,则YT含义为:因此,YT是方程解,在最后阶段,当所有zjcj0时,YT将是下述对偶问题最优解:YTACT,YTb=max其中,YT将满足:YTaj=zjcj。Operations Research Operations Research Prof. Wang Prof. Wang School of Economics & ManagementSchool of Economics & Managementpage page 27279/17/20249/17/2024第七、八讲4 如何选择支点列 (7) 加进判断行后,表格变为:(44)判断行之计算:新判断行=旧判断行-0乘支点行 0=(zscs)/trs(45)证明从略。t11t1nt10u11u1mtm1tmntm0um1ummz1c1zncnz0y1ymOperations Research Operations Research Prof. Wang Prof. Wang School of Economics & ManagementSchool of Economics & Managementpage page 28289/17/20249/17/2024第七、八讲5 举例 (1) 至此,单纯形表格法的基本步骤已推导完毕,下面举例来说明单纯形表格的应用。例1-21已知线性规划为:AX=b,X0,CTX=min其中: A= , b= ,CT=7,1,1(46) 例1-21应用阶段1,求出式(46)的初始基础可行解。解为了求初始基础可行解,要引进人工变量并构成新规划:AX=b,X0,CTX=min Operations Research Operations Research Prof. Wang Prof. Wang School of Economics & ManagementSchool of Economics & Managementpage page 29299/17/20249/17/2024第七、八讲5 举例 (2) a1a2a3e1e2be1123105e245601135790018其中,A= ,(X)T=(x1,x2,x3,s1,s2) b= (C)T=(0 0 0 1 1)现在变成求新规划最优解问题,显然,此规划的第1个基础可行解为:s1=5,s2=13,X=0,其相应表格为:(47)Operations Research Operations Research Prof. Wang Prof. Wang School of Economics & ManagementSchool of Economics & Managementpage page 30309/17/20249/17/2024第七、八讲5 举例 (3) 初始表格判断的计算很简单: ,例如z1c1=(1,4)c1=50=5从判断行看出,最大的判断元素为z3c3=9。故a3应进入基础解,支点列s=3(当然a1,a2进入也行),然后选支点行:故支点元素为t13=3,于是用公式可计算出第2个表格。Operations Research Operations Research Prof. Wang Prof. Wang School of Economics & ManagementSchool of Economics & Managementpage page 31319/17/20249/17/2024第七、八讲5 举例(4)a1a2a3e1e2ba310e2210213210303(48)从表格(48)看出,max(zjcj)= z1c1=2,故令a1进入基础解集,然后选支点行r: Operations Research Operations Research Prof. Wang Prof. Wang School of Economics & ManagementSchool of Economics & Managementpage page 32329/17/20249/17/2024第七、八讲5 举例(5)支点元素为t21=2。经变换,得出下述表格(49): a1a2a3e1e2ba301/212/3-1/67/6a111/20-11/23/2000-1-10(49)Operations Research Operations Research Prof. Wang Prof. Wang School of Economics & ManagementSchool of Economics & Managementpage page 33339/17/20249/17/2024第七、八讲5 举例(6)判断行zjcj全部0,故达最优,且z0=0。说明原问题存在可行解,且第1个基础可行解即为新规划的最优解:x2=0,x3=7/6,x1=3/2。于是阶段1结束。例1-22求解(46)式的最优解。即进行阶段2。解将例1-21求得的新规划最优表格转换为原规划的初始单纯形表格。转换原则是:1)表的上面m行基本不变,新表右半部uij与原表人工变量矢量所对应的tij一致。2)表的判断行,需按照原规划的目标系数重算。Operations Research Operations Research Prof. Wang Prof. Wang School of Economics & ManagementSchool of Economics & Managementpage page 34349/17/20249/17/2024第七、八讲5 举例(7)计算的初始单纯形表格如表格(50):比较(49)与(50),看出:把e1,e2列移往右边a1a2a3be1e2a301a110103035/319/310/3(50)Operations Research Operations Research Prof. Wang Prof. Wang School of Economics & ManagementSchool of Economics & Managementpage page 35359/17/20249/17/2024第七、八讲5 举例(8)判断行不同,因阶段1时的新规划费用系数为CT=(00011),而原规划为CT=711。初始解的基础矢量为a3,a1,=(17)。例:z2c2=1+71=3z0=1+7=35/3y1=1+(-1)7=Operations Research Operations Research Prof. Wang Prof. Wang School of Economics & ManagementSchool of Economics & Managementpage page 36369/17/20249/17/2024第七、八讲5 举例(9)从表格(50)看出:z2c2=3为唯一正值,选s=2。选支点行:trs= V1 =a2(代替a3)最后表格:a1a2a3be1e2a20127/34/3-1/3a110-11/3-5/32/300-614/3-31/313/3Operations Research Operations Research Prof. Wang Prof. Wang School of Economics & ManagementSchool of Economics & Managementpage page 37379/17/20249/17/2024第七、八讲5 举例(10)则知,所有zjcj0(j =1,2,3),已达最优。最优基础可行解:x2=,x1=mincost=CTX =z0=最优对偶分量: y1=,y2=检查条件:AX=b,X0,YTACT,CTX=YTb。全部符合条件。eNbJ8G5D1A-w*t$qYnVkSgPdLaI7F3C0z)v&s#pXmUiRfOcK9H5E2B+x(u%rZoWkThQeMbJ8G4D1A-w*t!qYnVjSgPdLaI6F3C0y)v&s#pXlUiRfNcK9H5E2A+x(u$rZoWkThPeMbJ7G4D1z-w&t!qYmVjSgOdL9I6F3B0y)v%s#oXlUiQfNcK8H5E2A+x*u$rZnWkThPeMaJ7G4C1z-w&t!pYmVjRgOdL9I6E3B0y(v%s#oXlTiQfNbK8H5D2A-x*u$qZnWkShPdMaJ7F4C1z)w&t!pYmUjRgOcL9I6E3B+y(v%r#oXlTiQeNbK8G5D2A-x*t$qZnVkShPdMaI7F4C0z)w&s!pXmUjRfOcL9H6E2B+y(u%r#oWlTiQeNbJ8G5D1A-x*t$qYnVkSgPdMaI7F3C0z)v&s!pXmUiRfOcK9H6E2B+x(u%rZoWlThQeMbJ8G4D1A-w*t!qYnVjSgPdLaI6F3C0y)v&s#pXmUiRfNcK9H5E2B+x(u$rZoWkThQeMbJ7G4D1z-w*t!qYmVjSgOdLaI6F3B0y)v%s#pXlUiQfNcK8H5E2A+x*u$rZnWkThPeMbJ7G4C1z-w&t!qYmVjRgOdL9I6F3B0y(v%s#oXlUiQfNbK8H5D2A+x*u$qZnWkShPeMaJ7F4C1z)w&t!pYmUjRgOcL9I6E3B+y(v%r#oXlTiQfNbK8G5D2A-x*u$qZnVkShPdMaJ7F4C0z)w&s!pYmUjRfOcL9H6E3B+y(u%r#oWlTiQeNbJ8G5D1A-x*t$qYnVkSgPdMaI7F4C0z)v&s!pXmUjRfOcK9H6E2B+y(u%rZoWlThQeNbJ8G4D1A-w*t$qYnVjSgPdLaI7F3C0y)v&s#pXmUiRfNcK9H5E2B+x(u%rZoWkThQeMbJ8G4D1z-w*t!qYnVjSgOdLaI6F3C0y)v%s#pXlUiRfNcK8H5E2A+x(u$rZnWkThPeMbJ7G4C1z-w&t!qYmVjRgOdL9I6F3B0y)v%s#oXlUiQfNcK8H5D2A+x*u$rZnWkShPeMaJ7G4C1z)w&t!pYmVjRgOcL9I6E3B0y(v%r#oXlTiQfNbK8G5D2A-x*u$qZnWkShPdMaJ7F4C1z)w&s!pYmUjRgOcL9H6E3B+y(v%r#oWlTiQeNbK8G5D1A-t!pYmVjRgOcL9I6E3B0y(v%r#oXlTiQfNbK8H5D2A-x*u$qZnWkShPdMaJ7F4C1z)w&s!pYmUjRgOcL9H6E3B+y(v%r#oWlTiQeNbK8G5D1A-x*t$qZnVkSgPdMaI7F4C0z)w&s!pXmUjRfOcL9H6E2B+y(u%r#oWlThQeNbJ8G5D1A-w*t$qYnVkSgPdLaI7F3C0z)v&s#pXmUiRfOcK9H5E2B+x(u%rZoWlThQeMbJ8G4D1A-w*t!qYnVjSgPdLaI6F3C0y)v&s#pXlUiRfNcK9H5E2A+x(u$rZoWkThPeMbJ7G4D1z-w&t!qYmVjSgOdL9I6F3B0y)v%s#pXlUiQfNcK8H5E2A+x*u$rZnWkThPeMaJ7G4C1z-w&t!pYmVjRgOdL9I6E3B0y(v%s#oXlTiQfNbK8H5D2A-x*u$qZnWkShPeMaJ7F4C1z)w&t!pYmUjRgOcL9I6E3B+y(v%r#oXlTiQeNbK8G5D2A-x*t$qZnVkShPdMaI7F4C0z)w&s!pXmUjRfOcL9H6E2B+y(u%r#oWlTiQeNbJ8G5D1A-x*t$qYnVkSgPdMaI7F3C0z)v&s!pXmUiRfOcK9H6E2B+x(u%rZoWlThQeMbJ8G4D1A-w*t!qYnVjSgPdLaI7F3C0y)v&s#pXmUiRfNcK9H5E2B+x(u$rZoWkThQeMbJ7G4D1z-w*t!qYmVjSgOdLaI6F3B0y)v%s#pXlUiQfNcK8H5E2A+x(u$rZnWkThPeMbJ7G4C1z-w&t!qYmVjRgOdL9I6F3B0y(v%s#oXlUiQfNbK8H5D2A+x*u$qZnWkShPeMaJ7F4C1z)w&t!pYmUjRgOcL9I6E3B0y(v%r#oXlTeMbJ7G4C1z-w&t!qYmVjRgOdL9I6F3B0y(v%s#oXlUiQfNbK8H5D2A+x*u$qZnWkShPeMaJ7G4C1z)w&t!pYmVjRgOcL9I6E3B0y(v%r#oXlTiQfNbK8G5D2A-x*u$qZnVkShPdMaJ7F4C0z)w&s!pYmUjRfOcL9H6E3B+y(u%r#oWlTiQeNbK8G5D1A-x*t$qZnVkSgPdMaI7F4C0z)v&s!pXmUjRfOcK9H6E2B+y(u%rZoWlThQeNbJ8G4D1A-w*t$qYnVjSgPdLaI7F3C0z)v&s#pXmUiRfOcK9H5E2B+x(u%rZoWkThQeMbJ8G4D1z-w*t!qYnVjSgOdLaI6F3C0y)v%s#pXlUiRfNcK8H5E2A+x(u$rZoWkThPeMbJ7G4D1z-w&t!qYmVjSgOdL9I6F3B0y)v%s#oXlUiQfNcK8H5D2A+x*u$rZnWkShPeMaJ7G4C1z)w&t!pYmVjRgOcL9I6E3B0y(v%s#oXlTiQfNbK8H5D2A-x*u$qZnWkShPdMaJ7F4C1z)w&s!pYmUjRgOcL9H6E3B+y(v%r#oWlTiQeNbK8G5D1A-x*t$qZnVkShPdMaI7F4C0z)w&s!pXmUjRfOcL9H6E2B+y(unWkShPdMaJ7F4C1z)w&s!pYmUjRgOcL9H6E3B+y(v%r#oWlTiQeNbK8G5D2A-x*t$qZnVkShPdMaI7F4C0z)w&s!pXmUjRfOcL9H6E2B+y(u%r#oWlThQeNbJ8G5D1A-w*t$qYnVkSgPdLaI7F3C0z)v&s!pXmUiRfOcK9H6E2B+x(u%rZoWlThQeMbJ8G4D1A-w*t!qYnVjSgPdLaI6F3C0y)v&s#pXlUiRfNcK9H5E2A+x(u$rZoWkThQeMbJ7G4D1z-w*t!qYmVjSgOdLaI6F3B0y)v%s#pXlUiQfNcK8H5E2A+x*u$rZnWkThPeMaJ7G4C1z-w&t!pYmVjRgOdL9I6E3B0y(v%s#oXlUiQfNbK8H5D2A+x*u$qZnWkShPeMaJ7F4C1z)w&t!pYmUjRgOcL9I6E3B+y(v%r#oXlTiQeNbK8G5D2A-x*t$qZnVkShPdMaJ7F4C0z)w&s!pYmUjRfOcL9H6E3B+y(u%r#oWlTiQeNbJ8G5D1A-x*t$qYnVkSgPdMaI7F3y(v%r#oXlTiQeNbK8G5D2A-x*u$qZnVkShPdMaJ7F4C0z)w&s!pYmUjRfOcL9H6E3B+y(u%r#oWlTiQeNbJ8G5D1A-x*t$qYnVkSgPdMaI7F3C0z)v&s!pXmUjRfOcK9H6E2B+y(u%rZoWlThQeNbJ8G4D1A-w*t$qYnVjSgPdLaI7F3C0y)v&s#pXmUiRfNcK9H5E2B+x(u$rZoWkThQeMbJ8G4D1z-w*t!qYnVjSgOdLaI6F3C0y)v%s#pXlUiRfNcK8H5E2A+x(u$rZnWkThPeMbJ7G4C1z-w&t!qYmVjRgOdL9I6F3B0y(v%s#oXlUiQfNcK8H5D2A+x*u$rZnWkShPeMaJ7G4C1z)w&t!pYmVjRgOcL9I6E3B0y(v%r#oXlTiQfNbK8G5D2A-x*u$qZnVkShPdMaJ7F4C1z)w&s!pYmUjRgOcL9H6E3B+y(v%r#oWlTiQeNbK8G5D1A-x*t$qZnVkSgPdMaI7F4C0z)v&s!pXmUjRfOcK9H6E2B+y(u%rZoWlThQeNbJ8G5D1A-w*t$qYnVkSgPdLaI7+y(v%r#oWlTiQeNbK8G5D1A-x*t$qZnVkSgPdMaI7F4C0z)v&s!pXmUjRfOcL9H6E2B+y(u%r#oWlThQeNbJ8G5D1A-w*t$qYnVkSgPdLaI7F3C0z)v&s#pXmUiRfOcK9H5E2B+x(u%rZoWkThQeMbJ8G4D1z-w*t!qYnVjSgPdLaI6F3C0y)v&s#pXlUiRfNcK9H5E2A+x(u$rZoWkThPeMbJ7G4D1z-w&t!qYmVjSgOdL9I6F3B0y)v%s#oXlUiQfNcK8H5E2A+x*u$rZnWkThPeMaJ7G4C1z-w&t!pYmVjRgOdL9I6E3B0y(v%s#oXlTiQfNbK8H5D2A-x*u$qZnWkShPdMaJ7F4C1z)w&t!pYmUjRgOcL9I6E3B+y(v%r#oXlTiQeNbK8G5D2A-x*t$qZnVkShPdMaI7F4C0z)w&s!pXmUjRfOcL9H6E2B+y(u%r#oWlThQeNbJ8G5D1A-x*t$qYnVkSgPdMaI7F3C(v%r#oXlTiQeNbK8G5D2A-x*t$qZnVkShPdMaI7F4C0z)w&s!pXmUjRfOcL9H6E3B+y(u%r#oWlTiQeNbJ8G5D1A-x*t$qYnVkSgPdMaI7F3C0z)v&s!pXmUiRfOcK9H6E2B+x(u%rZoWlThQeMbJ8G4D1A-w*t!qYnVjSgPdLaI7F3C0y)v&s#pXmUiRfNcK9H5E2B+x(u$rZoWkThQeMbJ7G4D1z-w*t!qYmVjSgOdLaI6F3B0y)v%s#pXlUiQfNcK8H5E2A+x(u$rZnWkThPeMbJ7G4C1z-w&t!qYmVjRgOdL9I6F3B0y(v%s#oXlUiQfNbK8H5D2A+x*u$qZnWkShPeMaJ7F4C1z)w&t!pYmVjRgOcL9I6E3B0y(v%r#oXlTiQfNbK8G5D2A-x*u$qZnVkShPdMaJ7F4C0z)w&s!pYmUNbK8H5D2A+x*u$qZnWkShPeMaJ7G4C1z)w&t!pYmVjRgOcL9I6E3B0y(v%r#oXlTiQfNbK8G5D2A-x*u$qZnVkShPdMaJ7F4C0z)w&s!pYmUjRfOcL9H6E3B+y(v%r#oWlTiQeNbK8G5D1A-x*t$qZnVkSgPdMaI7F4C0z)v&s!pXmUjRfOcK9H6E2B+y(u%rZoWlThQeNbJ8G4D1A-w*t$qYnVjSgPdLaI7F3C0z)v&s#pXmUiRfOcK9H5E2B+x(u%rZoWkThQeMbJ8G4D1z-w*t!qYnVjSgOdLaI6F3C0y)v%s#pXlUiRfNcK8H5E2A+x(u$rZoWkThPeMbJ7G4D1z-w&t!qYmVjSgOdL9I6F3B0y)v%s#oXlUiQfNcK
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号