资源预览内容
第1页 / 共24页
第2页 / 共24页
第3页 / 共24页
第4页 / 共24页
第5页 / 共24页
第6页 / 共24页
第7页 / 共24页
第8页 / 共24页
第9页 / 共24页
第10页 / 共24页
亲,该文档总共24页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
2.2等差数列的前等差数列的前n项和项和(第二课时)(第二课时)等差数列的前等差数列的前n项和的函数特项和的函数特性及最大致与最小值性及最大致与最小值1等差数列的前等差数列的前n n项和公式项和公式: :形式形式1:1:形式形式2:2:复习回顾复习回顾2一、常用数列的求和方法:一、常用数列的求和方法:(3)(3)裂项法:设裂项法:设aan n 是等差数列,公差是等差数列,公差d0d0新课讲授新课讲授3 (4) (4)倒序相加法:用于与首末两端等距离的和倒序相加法:用于与首末两端等距离的和相等。相等。4. .将等差数列前将等差数列前n n项和公式项和公式 看作是一个关于看作是一个关于n n的函数,这个函数有什么的函数,这个函数有什么特点?特点? S Sn n是关于是关于n n的二次式,常数项为的二次式,常数项为零。(零。(d d可以为零)可以为零)则则 Sn=An2+Bn令令新课讲授新课讲授5 结论结论1:若数列:若数列aan n 的前的前n n项和为项和为S Sn n=pn=pn2 2+qn+qn,(p,q(p,q为常数为常数) )是关于是关于n n的二次式,则数列的二次式,则数列aan n 是等差数列。是等差数列。aan n 是等差数列是等差数列S Sn n=pn=pn2 2+qn(p,q+qn(p,q为常数为常数,d=2p),d=2p)当当d00时时,S,Sn n是常数项为零的二次函数是常数项为零的二次函数若若C0,则数列,则数列an不是等差数列。不是等差数列。若若C=0,则,则an为等差数列;为等差数列;结论结论2:设数列:设数列an的前的前n项和为项和为 Sn=An2+Bn+C,(A,B,C是常数)是常数)当当d=0=0时时,S,Sn n=na=na1 1不是二次函数不是二次函数6789 例例1 若一个等差数列前若一个等差数列前3项和为项和为34,最,最后三项和为后三项和为146,且所有项的和为,且所有项的和为390,则,则这个数列共有这个数列共有_项。项。13 例例2 已知数列已知数列an中中Sn=2n2+3n,求证:,求证:an是等差数列是等差数列.10例例1、若等差数列、若等差数列an前前4项和是项和是2,前,前9项和是项和是6,求其前,求其前n 项和的公式。项和的公式。,解之得:解之得:解:设首项为解:设首项为a1,公差为,公差为d,则有:,则有:11 设设 Sn= an2 + bn,依题意得:,依题意得:S4=2, S9= 6,即即解之得:解之得:另解:另解:12等差数列的前等差数列的前n项的最值问题项的最值问题例例1.已知等差数列已知等差数列an中中,a1=13且且S3=S11,求求n取何值时取何值时,Sn取最大值取最大值.解法解法1由由S3=S11得得 d=2当当n=7时时,Sn取最大值取最大值49.13等差数列的前等差数列的前n项的最值问题项的最值问题例例1.已知等差数列已知等差数列an中中,a1=13且且S3=S11,求求n取何值时取何值时,Sn取最大值取最大值.解法解法2由由S3=S11得得d=20当当n=7时时,Sn取最大值取最大值49.则则Sn的图象如图所示的图象如图所示又又S3=S11所以图象的对称轴为所以图象的对称轴为7n113Sn14等差数列的前等差数列的前n项的最值问题项的最值问题例例1.已知等差数列已知等差数列an中中,a1=13且且S3=S11,求求n取何值时取何值时,Sn取最大值取最大值.解法解法3由由S3=S11得得d=2当当n=7时时,Sn取最大值取最大值49. an=13+(n-1) (-2)=2n+15由由得得15a7+a8=0等差数列的前等差数列的前n项的最值问题项的最值问题例例1.已知等差数列已知等差数列an中中,a1=13且且S3=S11,求求n取何值时取何值时,Sn取最大值取最大值.解法解法4由由S3=S11得得当当n=7时时,Sn取最大值取最大值49.a4+a5+a6+a11=0而而 a4+a11=a5+a10=a6+a9=a7+a8又又d=20a70,a8016解解:由由S3=S11得得d,S3 = S11,问:这个数列的前,问:这个数列的前几项的和最大?几项的和最大?17例例2:已知数列:已知数列an是等差数列,且是等差数列,且a1= 21,公差,公差d=2,求这个数列的前,求这个数列的前n项和项和Sn的最大值。的最大值。S11最大为最大为121的前的前n项和为项和为 , ,当当n n为何值时,为何值时, 最大,最大,s22最大最大数列数列 的通项公式的通项公式 an=-8n+48已知已知 求:求:例例3设等差数列设等差数列18求等差数列前求等差数列前n项的最大项的最大(小小)的方法的方法方法方法1:由由 利用二次函利用二次函数的对称轴求得最值及取得最值时的数的对称轴求得最值及取得最值时的n的值的值.方法方法2:利用利用an的符号的符号当当a10,d0时时,数列前面有若干项为正数列前面有若干项为正,此此时所有正项的和为时所有正项的和为Sn的最大值的最大值,其其n的值由的值由an0且且an+10求得求得.当当a10时时,数列前面有若干项为负数列前面有若干项为负,此此时所有负项的和为时所有负项的和为Sn的最小值的最小值,其其n的值由的值由an 0且且an+1 0求得求得.19练习练习:已知数列已知数列an的通项为的通项为an=26-2n,要使此数列的前要使此数列的前n项和项和最大最大,则则n的值为的值为( )A.12 B.13 C.12或或13 D.14C20当当d00时时,S,Sn n是常数项为零的二次函数是常数项为零的二次函数则则 Sn=An2+Bn令令小结小结 S Sn n是关于是关于n n的二次式,常数项为的二次式,常数项为零。(零。(d d可以为零)可以为零)21 结论结论1:若数列:若数列aan n 的前的前n n项和为项和为S Sn n=pn=pn2 2+qn+qn,(p,q(p,q为常数为常数) )是关于是关于n n的二次式,则数列的二次式,则数列aan n 是等差数列。是等差数列。aan n 是等差数列是等差数列S Sn n=pn=pn2 2+qn(p,q+qn(p,q为常数为常数,d=2p),d=2p)若若C0,则数列,则数列an不是等差数列。不是等差数列。若若C=0,则,则an为等差数列;为等差数列;结论结论2:设数列:设数列an的前的前n项和为项和为 Sn=An2+Bn+C,(A,B,C是常数)是常数)小结小结22结论结论:3:等差数列前:等差数列前n项和不一定是关于项和不一定是关于n的二次的二次函数:函数:(1)当)当d0是,是,sn是项数是项数n的二次函数,且不的二次函数,且不含常数项;含常数项;(2)当)当d=0是,是,sn=na1,不是项数不是项数n 的二次函数。的二次函数。 反之,关于反之,关于n的二次函数也不一定是某等差数的二次函数也不一定是某等差数列的和。列的和。若若C0,则数列,则数列an不是等差数列。不是等差数列。若若C=0,则,则an为等差数列;为等差数列;Sn=An2+Bn+C,2324
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号