资源预览内容
第1页 / 共17页
第2页 / 共17页
第3页 / 共17页
第4页 / 共17页
第5页 / 共17页
第6页 / 共17页
第7页 / 共17页
第8页 / 共17页
第9页 / 共17页
第10页 / 共17页
亲,该文档总共17页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
等比数列等比数列定义定义:一般地,如果一个数列从一般地,如果一个数列从第二项第二项起,起,每一项与它前一项的每一项与它前一项的比比等于等于同一个常数同一个常数,那么这个数列就叫做那么这个数列就叫做等比数列等比数列,这个常数,这个常数叫做叫做等比数列的公比等比数列的公比,公比通常用字母,公比通常用字母q表示(表示(q0)用数学符号表示:用数学符号表示:等比数列的定义等比数列的定义等比数列的定义练习:练习:(是,(是,q2)(是,(是,q=2)(是,(是,q1)(不是)(不是)(不是)(不是)怎样推导等比数列的通项公式怎样推导等比数列的通项公式怎样推导等比数列的通项公式怎样推导等比数列的通项公式? ?方法一方法一:方法二:方法二:等差推导 a3=a2q=a1q2,a4=a3q=a2q2=a1q3,由此得到由此得到an=a1qn-1已知等比数列已知等比数列an的首项是的首项是a1,公比是,公比是q,求,求an由定义: a2 = a1q, 得到: 由定义: 得到:等比数列的通项公式:等比数列的通项公式: an=a1qn-1 (nN,q0)特别地,等比数列an中,a10,q0例例1一个等比数列的第项和第项分别是和,求它的第项和第项(分析:要求第项和第项,必分析:要求第项和第项,必先求公比先求公比q.可利用方程的思想进行求解。可利用方程的思想进行求解。)解解 :用:用an 表示题中公比为表示题中公比为q的等比数列,由已知条件,有的等比数列,由已知条件,有解得解得 因此因此,答:这个数列的第答:这个数列的第1项与第项与第2项分别是项分别是练习练习例例1一个等比数列的第项和第项分别是一个等比数列的第项和第项分别是和,求它的第项和第项和,求它的第项和第项【补充练习【补充练习】1.等比数列等比数列an中,中,a11,q3,则,则a8_,an=_.2.等比数列等比数列an中,中,a12,a932,则,则q_。 3.一个等比数列的第一个等比数列的第9项是项是16,公比是,公比是2,则它的第,则它的第 一项一项a1=_.37(3)n1小结4、已知数列、已知数列x,x(1x),x(1x)2,是等比数列,则实是等比数列,则实数数x的取值范围是的取值范围是 A.x1 B.x0,或,或x1 C.x0 D.x0, 且且x1D5、在等比数列中,已知首项为、在等比数列中,已知首项为 ,末项为,末项为 ,公比,公比为为 ,则项数是,则项数是 A.3 B.4 C.5 D.6B小结三、等比中项 【求下列两个数的等比中项求下列两个数的等比中项】(1)1, , 9 (2)-1, ,-4(3)-12, ,-3 (4)1, ,13261 如果在如果在a与与b中间插入一个数中间插入一个数G,使,使a,G,b成等比数列,那么成等比数列,那么G叫做叫做a与与b的的等比中项等比中项。若数列若数列an的首项是的首项是a1=1,公比公比q=2,则用通项公式表示是:则用通项公式表示是:an=2 n1上式还可以写成上式还可以写成可见,表示这个等比数列可见,表示这个等比数列的各点都在函数的各点都在函数 的图象上,如右图所示。的图象上,如右图所示。 0 1 2 3 4 nan87654321图象图象知识拓展知识拓展一、通项公式的推广一、通项公式的推广二、等比数列的性质二、等比数列的性质问题:问题:如果是项数相同的等比数列,如果是项数相同的等比数列, 那么是等比数列吗?那么是等比数列吗? 特别地特别地,如果是如果是 等比数列,等比数列,c是不等于的常数是不等于的常数 那么数列那么数列 也是等比数列也是等比数列 2、在等比数列、在等比数列 中,中, ,求该数列前七项之积。,求该数列前七项之积。 3、在等比数列、在等比数列an中中, , ,求求a8.1、在等比数列、在等比数列an中,中,已知已知 , ,求求 。练习:练习:、若等比数列、若等比数列an, a4=1, a7=8, 则则a6与与a10的等比中项是的等比中项是_.16、若等比数列、若等比数列an中中,若已知若已知a2=4,a5= ,求求an;若已知若已知a3 a4a5=8,求求a2a6的值的值.加油!加油!
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号