资源预览内容
第1页 / 共15页
第2页 / 共15页
第3页 / 共15页
第4页 / 共15页
第5页 / 共15页
第6页 / 共15页
第7页 / 共15页
第8页 / 共15页
第9页 / 共15页
第10页 / 共15页
亲,该文档总共15页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
1、什么是平面直角坐标系?、什么是平面直角坐标系?2、两条坐标轴如何称呼,方向如何确定?、两条坐标轴如何称呼,方向如何确定?3、坐标轴分平面为四个部分,分别叫做什么、坐标轴分平面为四个部分,分别叫做什么?4、什么是点的坐标?平面内点的坐标有几部、什么是点的坐标?平面内点的坐标有几部分组成?分组成? 5、坐标轴上的点属于什么象限?、坐标轴上的点属于什么象限?011xyABCDEFGH如图,分别写出八边形各个顶点和坐标轴上的点的坐标。如图,分别写出八边形各个顶点和坐标轴上的点的坐标。(7,2)(4,5)(-1,5)(-4,2)(-4,-3)(-1,-6)(4,-6)(7,-3)每一个象限内的点的坐标在符号上有何特点?每一个象限内的点的坐标在符号上有何特点?坐标轴上的点的坐标有什么特点?坐标轴上的点的坐标有什么特点?如果两个点连线与如果两个点连线与x轴平行,那么这轴平行,那么这两个点的坐标有何两个点的坐标有何特点?特点?如果两个点连线如果两个点连线与与y轴平行,那么轴平行,那么这两个点的坐标有这两个点的坐标有何特点?何特点?MNPQ(7,O)(-4,0)(O,5)(0,-6)(+,+)(-,+)(-,-)(+,-)结论结论连线平行于连线平行于x轴轴的点的的点的纵纵坐标相同坐标相同连线平行于连线平行于y轴轴的点的的点的横横坐标相同坐标相同坐标轴的点至少有一个是坐标轴的点至少有一个是 x轴,轴,y轴上点的坐标的特点:轴上点的坐标的特点: x轴轴上的点的上的点的纵纵坐标为坐标为0,表示为,表示为(x,0) y轴轴上的点的上的点的横横坐标为坐标为0,表示为,表示为(0,y)o24682468yx练一练:练一练: 在下图的直角坐标系中描出下列各组点,并将各组内的在下图的直角坐标系中描出下列各组点,并将各组内的线段依次连接起来线段依次连接起来,观察它像什么图形。观察它像什么图形。 1. (2,0), (4,0), (6,2), (6,6), (5,8), (4,6), (2,6), (1,8), (0,6), (0,2), (2,0); 2. (1,3), (2,2), (4,2), (5,3); 3. (1,4), (2,4), (2,5), (1,5), (1,4); 4. (4,4), (5,4), (5,5), (4,5), (4,4); 5. (3,3).反思:由所得反思:由所得的图象,并由的图象,并由点的规律性变点的规律性变化体会化体会“数对数对”可以做什么?可以做什么?解解: :像猫脸像猫脸标记位置、标记位置、画画画画例例1, 如图如图, 矩形矩形ABCD的长宽分别是的长宽分别是6 , 4 , 建立适当的建立适当的坐标系坐标系,并写出各个顶点的坐标并写出各个顶点的坐标. BCDA解解: 如图如图,以点以点C为坐标为坐标原点原点, 分别以分别以CD , CB所所在的直线为在的直线为x 轴轴,y 轴建轴建立直角坐标系立直角坐标系. 此时此时C点点坐标为坐标为( 0 , 0 ).由由CD长为长为6, CB长为长为4, 可得可得D , B , A的坐标分的坐标分别为别为D( 6 , 0 ), B( 0 , 4 ),A( 6 , 4 ) . xy0(0 , 0 )( 0 , 4 )( 6 , 4 )( 6 , 0)11例例1, 如图如图, 矩形矩形ABCD的长宽分别是的长宽分别是6 , 4 , 建立适当的坐标系建立适当的坐标系,并写出各个顶点的坐标并写出各个顶点的坐标. BCDA解解: 如图如图,分别以两对边分别以两对边中点的连线为中点的连线为x 轴轴,y 轴轴建立直角坐标系建立直角坐标系. 此时此时各顶点坐标为各顶点坐标为A( 3 , 2),B( -3 , 2 ),C( -3 , -2 ), D( 3 , -2 ) . xy0(-3, -2 )( -3 , 2)( 3, 2 )( 3 , -2)11点点A与点与点 D关于关于X轴对称轴对称横坐标相同横坐标相同,纵坐标互为相反数纵坐标互为相反数点点A与点与点 B关于关于Y轴对称轴对称纵坐标相同纵坐标相同,横坐标互为相反数横坐标互为相反数点点A与点与点 C关于关于原点对称原点对称横坐标、纵坐标横坐标、纵坐标均互为相反数均互为相反数12345-4 -3 -2 -131425-2-4-1-3yOXP(3,2)B(3,-2)A(-3,2)C(-3,- 2 ) 你能说出点你能说出点P关于关于x轴、轴、y轴、轴、原点的对称点坐标吗?原点的对称点坐标吗?若设点若设点M(a,b), M点关于点关于X轴的对称点轴的对称点M1( ) M点关于点关于Y轴的对称点轴的对称点M2( ),), M点关于原点点关于原点O的对称点的对称点M3( )a,-b- a, b-a,-b 试一试试一试y 4 2 5 3 6 1 2 3-3x-2-2-3o-1-4-11五位同学做游戏五位同学做游戏,位置如图位置如图,建立适当的直角建立适当的直角坐标系坐标系,写出这五个同学所在位置的坐标写出这五个同学所在位置的坐标.1.1.在上面的例题中在上面的例题中, ,你还可以怎样你还可以怎样建立直角坐标系建立直角坐标系? ? 没有一成不变的模式没有一成不变的模式, 但选择适当的坐标系但选择适当的坐标系, 可使计算降低难度可使计算降低难度!2.你认为怎样建立适合的直角你认为怎样建立适合的直角坐标系坐标系?巩固练习:巩固练习:1.1.点(点(3 3,-2-2)在第)在第_象限象限; ;点(点(-1.5-1.5,-1-1)在第在第_象限;点(象限;点(0 0,3 3)在)在_轴上;轴上;若点(若点(a+1a+1,-5-5)在在y y轴上,则轴上,则a=_. a=_. 4 4. .若点若点P P在第三象限且到在第三象限且到x x轴的距离为轴的距离为 2 2 ,到到y y轴的距离为轴的距离为1.51.5,则点,则点P P的坐标是的坐标是_。3.3.点点 M M(- 8- 8,1212)到到 x x轴的距离是轴的距离是_,到到 y y轴的距离是轴的距离是_._.2.2.点点A A在在x x轴上,距离原点轴上,距离原点4 4个单位长度,则个单位长度,则A A点的坐标是点的坐标是 _。 5.5.点点A A(1-a1-a,5 5),),B B(3 ,b3 ,b)关于关于y y轴对称,轴对称, 则则a=_,b=_a=_,b=_。 四四三三y-1(4,0)或或(-4,0)128(-1.5,-2)457.7.如果同一直角坐标系下两个点的横坐标相同,如果同一直角坐标系下两个点的横坐标相同,那么过这两点的直线(那么过这两点的直线( )(A A)平行于平行于x x轴轴 (B B)平行于平行于y y轴轴(C C)经过原点经过原点 (D D)以上都不对以上都不对8.8.若点(若点(a,b-1)a,b-1)在第二象限,则在第二象限,则a a的取值范的取值范围是围是_,b b的取值范围的取值范围_。6.在平面直角坐标系内在平面直角坐标系内,已知点已知点P ( a , b ), 且且a b 0 , 则点则点P的位置在的位置在_。第二或四象限第二或四象限B Ba1告诉大家本节课你的收获!在一次在一次“寻宝寻宝”游戏中,寻宝人已经找到了坐标为游戏中,寻宝人已经找到了坐标为(3,2)和()和(3,-2)的两个标志点,并且知道藏宝)的两个标志点,并且知道藏宝地点的坐标为(地点的坐标为(4,4),除此之外不知道其他信息,),除此之外不知道其他信息,如何确定直角坐标系找到如何确定直角坐标系找到“宝藏宝藏”?请跟同伴交流。?请跟同伴交流。12345-4 -3 -2 -131425-2-4-1-3yO(3,-2)X(3,2)(4,4)考考你考考你
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号