资源预览内容
第1页 / 共28页
第2页 / 共28页
第3页 / 共28页
第4页 / 共28页
第5页 / 共28页
第6页 / 共28页
第7页 / 共28页
第8页 / 共28页
第9页 / 共28页
第10页 / 共28页
亲,该文档总共28页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
第五章第五章 相似理论与相似理论与因次分析因次分析 流体力学的研究方法中实验研究既流体力学的研究方法中实验研究既是理论分析的依据,同时也是检验理论是理论分析的依据,同时也是检验理论的准绳,具有很重要的作用。的准绳,具有很重要的作用。 本章将探讨其理论基础:本章将探讨其理论基础: 相似理论相似理论 因次分析因次分析瘪桨伯侵仍瑚鼓冯镍用诧殴山绪楔劫厘曾搏哪介参榴蛔沮成硷纱涧溺洁斡第五章相似理论与因次分析第五章相似理论与因次分析10.1 力学相似性原理10.2 相似准数10.3 模型率10.4 因次分析法痞蔬满僚桥绽叫暮弯贺帚钩汉伺耸酝纵伺剩血垃蜘饭溃龋才妹万刑啦害水第五章相似理论与因次分析第五章相似理论与因次分析10.1 相似理论相似理论 为使模型流动能表现出实型流动的为使模型流动能表现出实型流动的主要现象和特性,并从模型流动上预测主要现象和特性,并从模型流动上预测出实型流动的结果,就必须使两者在流出实型流动的结果,就必须使两者在流动上相似,即两个互为相似流动的对应动上相似,即两个互为相似流动的对应部位上对应物理量都有一定的比例关系。部位上对应物理量都有一定的比例关系。 具体来说,两相似流动应具体来说,两相似流动应几何相似几何相似 、运动相似、运动相似、 动力相似动力相似 。两流动相似应满足两流动相似应满足的条件的条件高男鹿膛佬奔悉殃岸懦蚌蛔斥恰晴边耙昏娟椽俞办辛良规酮嫡偶诀灵输相第五章相似理论与因次分析第五章相似理论与因次分析一一 几何相似(空间相似)几何相似(空间相似) 定义:定义: 两流动的两流动的对应边长对应边长成同一比例,成同一比例,对应角相等。对应角相等。 引入尺度比例系数引入尺度比例系数 进而,面积比例系数进而,面积比例系数 体积比例系数体积比例系数模型流动用下标模型流动用下标m表示表示原型流动用下标原型流动用下标p表示表示旅还围栏凳伎韵襄杭务兵潘座渴究涟永缴脖疟嘉轴勾矿碘哪著梢杨鸿她屿第五章相似理论与因次分析第五章相似理论与因次分析二二 运动相似(时间相似)运动相似(时间相似) 定义:两流动的对应点上的流体定义:两流动的对应点上的流体速度矢速度矢成同一比例。成同一比例。 引入速度比例系数引入速度比例系数由于由于 因此因此 运动相似建立在几何相似基础上,那么运动相似建立在几何相似基础上,那么运动相似只需确定时间比例系数运动相似只需确定时间比例系数 就可以就可以了。运动相似也就被称之为时间相似。了。运动相似也就被称之为时间相似。隘磷读湿巫旁逐鸽妊嫁笑耕隧欠躁睦潜拴响屉鼻饶开掐韧栋朔柞痔恿稳伏第五章相似理论与因次分析第五章相似理论与因次分析运动学物理量的比例系数都可以表示为尺运动学物理量的比例系数都可以表示为尺度比例系数和时间比例系数的不同组合形度比例系数和时间比例系数的不同组合形式。式。如:如:k kv v=k=kl lk kt t-1 -1 k ka a=k=kl lk kt t-2-2 k k =k=kt t-1 -1 k k =k=kl l2 2k kt t-1-1 kq=k kq=kl l3 3k kt t-1-1 的单位是m2/sq的单位是m3/t车蛛冬办涎惹令曝官壬衫柿峰稻阅臂篙急甸严铝堪戎沫蛹钞翔芥瀑鞘邹忧第五章相似理论与因次分析第五章相似理论与因次分析三三 动力相似(受力相似)动力相似(受力相似) 定义:两流动的对应部位上定义:两流动的对应部位上同名力矢同名力矢成成同一比例。引入力比例系数同一比例。引入力比例系数 也可写成也可写成 力学物理量的比例系数可以表示为密度、力学物理量的比例系数可以表示为密度、尺度、速度比例系数的不同组合形式,如:尺度、速度比例系数的不同组合形式,如:力矩力矩M M 压强压强p p功率功率N N 动力粘度动力粘度 摸缝钠镣犀只治哇埂累霍刑恢扔放年蔓塑库刃眼具夕熄狱庚还地跺您霄慌第五章相似理论与因次分析第五章相似理论与因次分析 综上所述,要使模型流动和原型流动相综上所述,要使模型流动和原型流动相似,需要两者似,需要两者在在时空相似的条件下受力相时空相似的条件下受力相似似。 动力相似(受力相似)用相似准则(相动力相似(受力相似)用相似准则(相似准数)的形式来表示,即:要使模型流似准数)的形式来表示,即:要使模型流动和原型流动动力相似,需要这两个流动动和原型流动动力相似,需要这两个流动在时空相似的条件下各相似准则都相等。在时空相似的条件下各相似准则都相等。炔玄歇挂亏线寞史嫌食芬拇血罗愤贴箭糙龟宏歪嚷锰并埠斗邯釜粟躲韶戒第五章相似理论与因次分析第五章相似理论与因次分析1 1 Strouhal Strouhal 相似准数相似准数 Sr=l/vt Sr=l/vt 表示时变惯性力和位变惯性力之比,反映了流体运动表示时变惯性力和位变惯性力之比,反映了流体运动随时间变化的情况随时间变化的情况2 2 Froude Froude 相似准数相似准数 Fr=v Fr=v2 2/gl/gl 表示惯性力和重力之比,反映了流体流动中重力所起表示惯性力和重力之比,反映了流体流动中重力所起的影响程度的影响程度3 3 Euler Euler 相似准数相似准数 Eu=p/ Eu=p/ v v2 2 表示压力和惯性力的比值表示压力和惯性力的比值4 4 Renolds Renolds 相似准数相似准数 Re=vl/ Re=vl/ = = vl/vl/ 表示惯性力和粘性力之比表示惯性力和粘性力之比5 5 Mach Mach 相似准数相似准数 Ma=v/c Ma=v/c 表示弹性力和惯性力之比,表示弹性力和惯性力之比,c c为声速,反映了流动的为声速,反映了流动的压缩程度压缩程度10.2 相似准数相似准数丸糯思凛绪尖荤闺高娄开汗庙词微够敏庶剑捣轰珍釜派宰仅限枯眉腆丁屿第五章相似理论与因次分析第五章相似理论与因次分析 描述流体运动和受力关系的是流体运动微分方程,描述流体运动和受力关系的是流体运动微分方程,两流动要满足相似条件就必须同时满足该方程,下面两流动要满足相似条件就必须同时满足该方程,下面是模型流动和原型流动不可压缩流动的运动微分方程是模型流动和原型流动不可压缩流动的运动微分方程在在x x方向上的分量形式方向上的分量形式: : (1) (1) (2) (2) 所有的同类物理量均具有各自的同一比例系数,有所有的同类物理量均具有各自的同一比例系数,有如下关系式:如下关系式: xm=xpkl ym=ypkl zm=zpkl vxm=vxpkv vym=vypkv vzm=vzpkv tm=tpkt m=pk m=pk pm=ppkp fm=fpkf 凤接处住后挛援棠笆区耐说晰咱芍诞倔遁从轧喊琢慑队雨顺啄镐惮萎得锯第五章相似理论与因次分析第五章相似理论与因次分析 将上述关系式带进方程(将上述关系式带进方程(1 1)中,这时的方程应该和方)中,这时的方程应该和方程(程(2 2)相同,因此得到)相同,因此得到 (3 3 3 3) 从左到右分别表示单位质量的时变惯性力、位变惯性力、从左到右分别表示单位质量的时变惯性力、位变惯性力、质量力、压力和摩擦力,(质量力、压力和摩擦力,(3 3)式表示模型流动和原型流)式表示模型流动和原型流动的力多边形相似。动的力多边形相似。 用(用(3 3)中的位变惯性力项除全式,得到)中的位变惯性力项除全式,得到 (4 4) (4 4)式表示模型流动和原型流动在满足动力相似时各比)式表示模型流动和原型流动在满足动力相似时各比例系数之间有一个约束,对各项进一步分析得到以下相例系数之间有一个约束,对各项进一步分析得到以下相似准则似准则涂丹拽何刨世每钎夏宛御迭适谩舞阴霞冉黔祈懦势腕诡配剧梢响矾驹歉涕第五章相似理论与因次分析第五章相似理论与因次分析 综上所述,动力相似可以用相似准数表示,若原综上所述,动力相似可以用相似准数表示,若原型和模型流动动力相似,各同名相似准数均相等,如型和模型流动动力相似,各同名相似准数均相等,如果满足则称为完全的动力相似。但是事实上,不是所果满足则称为完全的动力相似。但是事实上,不是所有的相似准数之间都是相容的,满足了甲,不一定就有的相似准数之间都是相容的,满足了甲,不一定就能满足乙。如果所有的相似准数都相等,意味着能满足乙。如果所有的相似准数都相等,意味着各比各比例系数例系数均等于均等于1 1,这实际上意味着模型流动和原型流动,这实际上意味着模型流动和原型流动各对应参数均相等,模型流动和原型流动就成为了相各对应参数均相等,模型流动和原型流动就成为了相等流动。因此,要使两者达到完全的动力相似,实际等流动。因此,要使两者达到完全的动力相似,实际上办不到,我们寻求的是上办不到,我们寻求的是主要动力相似主要动力相似。摔概彻虏哦相对迸会谋丝妙蘑氓几埠熏辈赢睫弹菊意蛮箍俏勉绰牌药锨蛹第五章相似理论与因次分析第五章相似理论与因次分析 要达到主要动力相似就应该根据所研究或所需解要达到主要动力相似就应该根据所研究或所需解决的原型流动的性质来决定,如对于重力起支配作用决的原型流动的性质来决定,如对于重力起支配作用的流动,选用的流动,选用FroudeFroude准数为主要相似准数(准数为主要相似准数(决定性相决定性相似准数似准数),满足),满足FrFrm m=Fr=Frp p ,此外,此外 管道流动,流体机械中的流动管道流动,流体机械中的流动 :ReRem m=Re=Rep p,ReRe数为决定数为决定性相似准数性相似准数 非定常流动:非定常流动:SrSrm m=Sr=Srp p,SrSr数为决定性相似准数数为决定性相似准数 可压缩流动:可压缩流动:MaMam m=Ma=Map p,MaMa数为决定性相似准数数为决定性相似准数 总之,总之,根据流动的性质来选取决定性相似准数根据流动的性质来选取决定性相似准数 堆绚鸟漠津庇柱猪旁淆守犀班饰焊愉酣缆疑琅兴帝守控力哦弱烧弯别福要第五章相似理论与因次分析第五章相似理论与因次分析决定性相似准数的定义决定性相似准数的定义:对该性质的流动以该决定性相似准数来判断是否对该性质的流动以该决定性相似准数来判断是否满足了主要动力相似。满足了主要动力相似。 只要满足了决定性相似准数相等后,就满足只要满足了决定性相似准数相等后,就满足了主要动力相似,抓住了解决问题的实质。了主要动力相似,抓住了解决问题的实质。(注意:对于(注意:对于EuEu准数而言,在其他相似准数作为准数而言,在其他相似准数作为决定性相似准数满足相等时,决定性相似准数满足相等时, Eu Eu准数同时可准数同时可以满足)以满足)拙后咆肢登洞掳虑沪钡剔衬吗僧孔逢扦煽窖柴瓷创腿凑痕飘综坷刽棱猪淘第五章相似理论与因次分析第五章相似理论与因次分析10.3 模型率模型率1 1 模型流动设计模型流动设计 设计模型流动,要使之成为原型流动的相似流动,设计模型流动,要使之成为原型流动的相似流动,原则上要满足几何相似、运动相似和主要动力相似。原则上要满足几何相似、运动相似和主要动力相似。具体设计时,首先要考虑该流动性质选择决定性相似具体设计时,首先要考虑该流动性质选择决定性相似准数,此外还要考虑实验规模和实验室的条件以及实准数,此外还要考虑实验规模和实验室的条件以及实验时所采用的流体是否与原型流动中的流体相同且是验时所采用的流体是否与原型流动中的流体相同且是否同一温度等因素。否同一温度等因素。2 2 数据换算数据换算 从模型流动实验中测定的各个数据不能直接用到从模型流动实验中测定的各个数据不能直接用到原型流动中去,需要用到数据换算。由模型流动中已原型流动中去,需要用到数据换算。由模型流动中已确定的一些比例系数以及物理量之间的关系来确定其确定的一些比例系数以及物理量之间的关系来确定其他一些比例系数,这样,原型流动中所要获得的数据他一些比例系数,这样,原型流动中所要获得的数据就等于模型流动中的相应数据除以对应的比例系数。就等于模型流动中的相应数据除以对应的比例系数。改缮怒抽安春鹏嗓通娱挨绪山呈陈蛹淘卓相爆烹惦努狭古煮扎疟倾系陛兽第五章相似理论与因次分析第五章相似理论与因次分析 例例1 1 有一轿车,高有一轿车,高h=1.5mh=1.5m,在公路上行驶,设计时速,在公路上行驶,设计时速v=108km/hv=108km/h,拟通过风洞中模型实验来确定此轿车在公路,拟通过风洞中模型实验来确定此轿车在公路上以此速行驶时的空气阻力。已知该风洞系低速全尺寸上以此速行驶时的空气阻力。已知该风洞系低速全尺寸风洞风洞(k(kl l=2/3)=2/3),并假定风洞试验段内气流温度与轿车在,并假定风洞试验段内气流温度与轿车在公路上行驶时的温度相同,试求:风洞实验时,风洞实公路上行驶时的温度相同,试求:风洞实验时,风洞实验段内的气流速度应安排多大?验段内的气流速度应安排多大? 解:解: 首先根据流动性质确定决定性相似准数首先根据流动性质确定决定性相似准数,这里选取,这里选取ReRe作为决定性相似准数,作为决定性相似准数,Rem=Rep,即,即kvkl/k=1, 再根据决定型相似准数相等,确定几个比例系数的相互再根据决定型相似准数相等,确定几个比例系数的相互约束关系约束关系,这里,这里k=1,所以,所以 kv=kl-1,由于,由于kl=lm/lp=2/3,那么,那么kv=vm/vp=1/kl=3/2 最后得到风洞实验段内的气流速度应该是最后得到风洞实验段内的气流速度应该是 vm=vpkv=1083/2=162km/h=45m/s 豁掐越骇遍苟浴啃喷枫竣捐绊唯屿臭次腻脐六掉询探蛔交思聋汉领砖疟贩第五章相似理论与因次分析第五章相似理论与因次分析 例例2 2 在例在例1 1中,通过风洞模型实验,获得模型轿车在中,通过风洞模型实验,获得模型轿车在风洞实验段中的风速为风洞实验段中的风速为45m/s45m/s时,空气阻力为时,空气阻力为1000N1000N,问:此轿车以问:此轿车以108km/h108km/h的速度在公路上行驶时,所受的的速度在公路上行驶时,所受的空气阻力有多大?空气阻力有多大? 解:在设计模型时,定下解:在设计模型时,定下 k=1 kl=2/3 kv=3/2 在相同的流体和相同的温度时,流体密度比例系在相同的流体和相同的温度时,流体密度比例系数数k=1,那么力比例系数,那么力比例系数 kF= k kl2 kv2=1(2/3)2(3/2)2=1 因此,该轿车在公路上以因此,该轿车在公路上以108km/h108km/h的速度行驶所遇的速度行驶所遇到的空气阻力到的空气阻力 Fp=Fm/kF=1000/1=1000N 死慈幂甄脊蒲返便挪唾措怜付昏下利素屡否翅晋妆跨车魏坡霖吊愈泛颈怔第五章相似理论与因次分析第五章相似理论与因次分析10.4 因次分析法因次分析法一一 因次分析的基本概念因次分析的基本概念二二 因次和谐性原理因次和谐性原理三三 布金汉(布金汉(BuckinghamBuckingham) 定理定理 亿胸无泥处喊泄瓮胆紫膝弄抡酶薯桨祝介招卢误姑禁耻蜂祷飞鹅炽闯逗凹第五章相似理论与因次分析第五章相似理论与因次分析一一 因次分析的基本概念因次分析的基本概念1 因次因次 是物理量的是物理量的单位种类单位种类,又称量刚,如长度、宽度、高,又称量刚,如长度、宽度、高度、深度、厚度等都可以用米、英寸、公尺等不同单位度、深度、厚度等都可以用米、英寸、公尺等不同单位来度量,但它们属于同一单位,即属于同一单位量纲来度量,但它们属于同一单位,即属于同一单位量纲(长度量纲),用(长度量纲),用L表示。表示。2 基本因次基本因次 导出因次导出因次 基本因次是具有独立性的因次,在流体力学领域中有基本因次是具有独立性的因次,在流体力学领域中有三个基本因次:三个基本因次:长度因次长度因次L 时间因次时间因次T 质量因次质量因次M 导出因次由基本因次组合表示,如导出因次由基本因次组合表示,如 加速度的因次加速度的因次 a=LT-2 力的因次力的因次 F=ma=MLT-2 任何物理量任何物理量B的因次可写成的因次可写成B=M L T 用 表示物理量的量纲,用( )表示物理量的单位桐蛾政跑润西邪涡埋缠衰自乙说扛窒寅筛暇坛断式史镑折徒俯柔簇云豢好第五章相似理论与因次分析第五章相似理论与因次分析3 基本量基本量 导出量导出量 一个物理问题中诸多的物理量分成基本物理量(基本一个物理问题中诸多的物理量分成基本物理量(基本量)和其他物理量(导出量),后者可由前者通过某种量)和其他物理量(导出量),后者可由前者通过某种关系到除,前者互为独立的物理量。关系到除,前者互为独立的物理量。基本量个数取基本基本量个数取基本因次个数,所取定的基本量必须包括三个基本因因次个数,所取定的基本量必须包括三个基本因次在内,次在内,这就是选取基本量的原则这就是选取基本量的原则。 如如 、v 、l可以构成一组基本量,包含了可以构成一组基本量,包含了L 、M 、T这三个基本量纲,而这三个基本量纲,而a 、v 、l就不能构成基本量,因为不就不能构成基本量,因为不包含基本因次包含基本因次M怨拆叛摊凋尾酷攒抨昏霓婚晋荡谰责辜科矾咳宰读忌蝗嘶已毙液纸淖啃物第五章相似理论与因次分析第五章相似理论与因次分析4 无因次量无因次量 指该物理量的因次为指该物理量的因次为1,用,用L0M0T0表示,实际是一个表示,实际是一个数,但与单纯的数不一样,它是几个物理量组合而成的数,但与单纯的数不一样,它是几个物理量组合而成的综合物理量,如前面讲过的相似准数综合物理量,如前面讲过的相似准数 主摘夹履狂样鸣瘤叔默聊襄莲馏身逼锌壳貌幢严党述危屹暂踪雷吹食沧套第五章相似理论与因次分析第五章相似理论与因次分析二二 因次和谐性原理因次和谐性原理 因次因次和谐性原理和谐性原理又被称为又被称为因次因次一致性原理,也叫因次一致性原理,也叫因次齐次性原理齐次性原理,指一个物理现象或一个物理过程用一个物,指一个物理现象或一个物理过程用一个物理方程表示时,方程中每项的因次应该是和谐的、一致理方程表示时,方程中每项的因次应该是和谐的、一致的、齐次的。的、齐次的。 一个正确的物理方程,式中的每项的因次应该一样,一个正确的物理方程,式中的每项的因次应该一样,以能量方程为例以能量方程为例 方程左边各项的因次从左到右依次为方程左边各项的因次从左到右依次为 、 惺幢皮镣壤基嘿惨狡哎悠辣造缓啮锤显看腺骂妒稗教窖诞亦凄饲冰洪童咒第五章相似理论与因次分析第五章相似理论与因次分析三三 布金汉(布金汉(BuckinghamBuckingham) 定理定理 对于某个物理现象或过程,如果存在有对于某个物理现象或过程,如果存在有n n个变量互为个变量互为函数关系,函数关系, f(a1,a2, an)=0而这些变量含有而这些变量含有m m个基本因次,可把这个基本因次,可把这n n个变量转换成为个变量转换成为有有(n-m)=i个无因次量的函数关系式个无因次量的函数关系式 F( 1, 2, n-m)=0这样可以表达出物理方程的明确的因次关系,并把方程这样可以表达出物理方程的明确的因次关系,并把方程中的变量数减少了中的变量数减少了m个,更为概括集中表示物理过程或个,更为概括集中表示物理过程或物理现象的内在关系。物理现象的内在关系。工垛蛤玩粘铀胯阉玛的鄙霜引凤解尝镁谰架换楷吐隙焙挫畸弊熟溅逊缩糠第五章相似理论与因次分析第五章相似理论与因次分析 例例 经初步分析知道,在水平等直径圆管道内流体流经初步分析知道,在水平等直径圆管道内流体流动的压降动的压降 p与下列因素有关:管径与下列因素有关:管径d、管长、管长l、管壁粗、管壁粗糙度糙度 、管内流体密度、管内流体密度 、流体的动力粘度、流体的动力粘度 ,以及断,以及断面平均流速面平均流速v有关。试用有关。试用 定理推出压降定理推出压降 p的表达形式。的表达形式。 解:解: 所求解问题的原隐函数关系式为所求解问题的原隐函数关系式为 f( p, d, l, , , , v)=0 有量纲的物理量个数有量纲的物理量个数n=7,此问题的基本量纲有,此问题的基本量纲有L、M 、T三个,三个,m=3,按,按 定理,这定理,这n个变量转换成有个变量转换成有n-m=4个无量纲量的函数关系式个无量纲量的函数关系式 F( 1, 2, 3, 4)=0 从从7个物理量中选出基本物理量个物理量中选出基本物理量3个,如取个,如取 、d、v,而,而 其余物理量用基本物理量的幂次乘积形式表示其余物理量用基本物理量的幂次乘积形式表示 打支窖碉灭昨死架睁驮楷尊哨指膝窍拖棍蝴载侍貌如础痛魂佛瑶莹厘捧鄙第五章相似理论与因次分析第五章相似理论与因次分析 1=l 1v 1d 1 2= 2v 2d 2 3= 3v 3d 3 4= p 4v 4d 4将上述表达式写成量纲形式将上述表达式写成量纲形式 1=L(ML-3) 1(LT-1) 1L 1=M0L0T (1) 2=L(ML-3) 2(LT-1) 2L 2=M0L0T0 (2) 3=ML-1T-1(ML-3) 3(LT-1) 3L 3=M0L0T0 (3) 4=ML-1T-2 (ML-3) 4(LT-1) 4L 4=M0L0T0 (4) 求解方程(求解方程(1) M: 1=0 T: 1=0 L: -3 1+ 1+ 1+1=0 1= -1所以所以 1=l/d求解方程(求解方程(2) M: 2=0 T: 2=0 L: 1-3 2+ 2+ 2=0 2= -1所以所以 2= /d何烦称君赚御呻货柠呢雾剪矢辈挪辫坤宅砌岳丫膝瞩京涎缸刻耸都篷境领第五章相似理论与因次分析第五章相似理论与因次分析求解方程(求解方程(3) M: 1+3=0 3= -1 T: -1- 3=0 3= -1 L: -1-3 3+ 3+ 3=0 3= -1所以所以 3= / vd=1/Re求解方程(求解方程(4) M: 1+ 4=0 4= -1 T: -2- 4=0 4= -2 L: -1-3 4+ 4+ 4=0 4= 0所以所以 4= p / v2因此,所解问题用无量纲数表示的方程为因此,所解问题用无量纲数表示的方程为 F(l/d, /d, 1/Re, p / v2)=0抄刨冶劫脖嗡焙甄峪浚痔窥疚蘸睛周育诸跨冠粉某潭栗倦质掀眼椭鼓恭埂第五章相似理论与因次分析第五章相似理论与因次分析至此,问题求解结束,进一步对上式整理规范。由上式至此,问题求解结束,进一步对上式整理规范。由上式可知可知 p / v2与其余三个无量纲数有关,那么与其余三个无量纲数有关,那么 p/ v2=F1(l/d, /d, 1/Re)= (l/d)F2( /d, 1/Re) p/ g= p/ = (l/d)(v2/2g)F2( /d, 1/Re)令令 = F2( /d, 1/Re) p/ = (l/d)(v2/2g)这就是达西公式,这就是达西公式, 为沿程阻力系数,表示了等直圆管为沿程阻力系数,表示了等直圆管中流动流体的压降与沿程阻力系数、管长、速度水头成中流动流体的压降与沿程阻力系数、管长、速度水头成正比,与管径成反比。正比,与管径成反比。脯匹极井剃依詹涵偿灾骋盐道踌鸟揩垦自拭歉理廷判酥吉槐多葬哗札敝绅第五章相似理论与因次分析第五章相似理论与因次分析 从该例题看出,利用从该例题看出,利用 定理,可以在仅知与物理过定理,可以在仅知与物理过程有关物理量的情况下,求出表达该物理过程关系式的程有关物理量的情况下,求出表达该物理过程关系式的基本结构形式。用量纲分析法所归纳出的式子往往还带基本结构形式。用量纲分析法所归纳出的式子往往还带有待定的系数,这个系数要通过实验来确定。而量纲分有待定的系数,这个系数要通过实验来确定。而量纲分析法求解中已指定如何用实验来确定这个系数。因此,析法求解中已指定如何用实验来确定这个系数。因此,量纲分析法也是流体力学实验的理论基础。量纲分析法也是流体力学实验的理论基础。梨稚粪落锣祷项折裳们拼帚燃恢临葛肤褥乒据勺掏跑蕴都窖车怀戏絮旷候第五章相似理论与因次分析第五章相似理论与因次分析
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号