资源预览内容
第1页 / 共33页
第2页 / 共33页
第3页 / 共33页
第4页 / 共33页
第5页 / 共33页
第6页 / 共33页
第7页 / 共33页
第8页 / 共33页
第9页 / 共33页
第10页 / 共33页
亲,该文档总共33页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
函数的单调性与导数情境设置情境设置探索研究探索研究演练反馈演练反馈总结提炼总结提炼作业布置作业布置创新升级创新升级2024/9/18oyxyox1oyx1在(在( ,0)和()和(0, )上分别是减函数。)上分别是减函数。但在定义域上不是减函数。但在定义域上不是减函数。在(在( ,1)上是减)上是减函数,在(函数,在(1, )上)上是增函数是增函数。在在( ,)上上是增函数是增函数概念回顾概念回顾画出下列函数的图像,并根据图像指出每个函数的单调区间画出下列函数的图像,并根据图像指出每个函数的单调区间2024/9/18单调性的概念单调性的概念对于给定区间上的函数f(x):1.如果对于这个区间上的任意两个自变量x1,x2,当x1x2时,都有 f(x1)f(x2),那么就说f(x)在这个区间上是增函数增函数.首页首页2.如果对于这个区间上的任意两个自变量x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数减函数对于函数yf(x)在某个区间上单调递增递增或单调递减递减的性性质质,叫做f(x)在这个区间上的单调性单调性,这个区间区间叫做f(x)的单调区间单调区间。2024/9/182024/9/18ox1yx1的左边函数图像的单调性的左边函数图像的单调性如何?如何?新课引入新课引入首页首页x1的左边函数图像上的各点切线的左边函数图像上的各点切线的倾斜角为的倾斜角为 (锐角锐角/钝角钝角)?他他的斜率有什么特征?的斜率有什么特征?3.由导数的几何意义,你可以得到由导数的几何意义,你可以得到什么结论?什么结论?x1的右边时,同时回答上述的右边时,同时回答上述问题。问题。2024/9/18定理:定理:一般地,函数一般地,函数yf(x)在某个开区间内可导:在某个开区间内可导:如果恒有如果恒有 f(x)0,则,则 f(x) 是增函数。是增函数。如果恒有如果恒有 f(x)0,解得解得x2 x (2,)时,时, 是增函数是增函数令令2x40,解得解得x0,解得解得x2或或x0 当当x (2,)时,时,f(x)是增函数;是增函数; 当当x (,0)时,时,f(x)也是增函数也是增函数令令6x212x0,解得解得,0x0以及以及f(x)0f(x)0,右侧右侧f(x)0,那么那么 f(x0)是极大值。是极大值。 C、如果在、如果在x0附近的左侧附近的左侧f(x)0,那么那么 f(x0)是极大值。是极大值。 、极大值一定大于极小值。、极大值一定大于极小值。B0xy2024/9/18巩固练习巩固练习:1、求函数、求函数 的极值的极值解解: : 令令 ,得,得 ,或,或 下面分两种情况讨论:下面分两种情况讨论:(1)当)当 ,即,即 时;时;(2)当)当 ,即,即 ,或,或 时。时。当当 变化时,变化时, 的变化情况如下表:的变化情况如下表: 当当 时, , 有极小有极小值,并且极小,并且极小值为 当当 时时, 有极大值,并且极大值为有极大值,并且极大值为2024/9/18思考:思考:已知函数已知函数 在在 处取得极值。处取得极值。 (1)求函数)求函数 的解析式的解析式 (2)求函数)求函数 的单调区间的单调区间解:解:(1) 在在 取得极值,取得极值, 即即 解得解得 (2) , 由由 得得 的单调增区间为的单调增区间为 由由 得得 的单调减区间为的单调减区间为2024/9/18课堂小结课堂小结: 一、方法一、方法: (1)确定函数的定义域确定函数的定义域(2)求导数求导数f(x)(3)求方程求方程f(x) =0的全部解的全部解(4)检查检查f(x)在在f(x) =0的根左的根左.右两边值的符号右两边值的符号,如果左正右负如果左正右负(或左负右正或左负右正),那么那么f(x)在这个根取得极大值或极小值在这个根取得极大值或极小值二、通过本节课使我们学会了应用数形结合法去求函数的极二、通过本节课使我们学会了应用数形结合法去求函数的极值,并能应用函数的极值解决函数的一些问题值,并能应用函数的极值解决函数的一些问题今天我们学习函数的极值今天我们学习函数的极值,并利用导数求函数的极值并利用导数求函数的极值2024/9/182024/9/18xoyax1b y=f(x)x2x3x4x5x6最值是相对函数最值是相对函数定义域整体定义域整体而言的而言的. .极值反映的是函数在极值反映的是函数在某一点附近的局部某一点附近的局部性质性质. .注意注意: :温温故故知知新新极值极值最值最值不唯一不唯一极大值和极小值大小不定极大值和极小值大小不定只能是内点值,不能为端点值只能是内点值,不能为端点值唯一唯一最大值一定比最小值大最大值一定比最小值大两者都有可能两者都有可能2024/9/18xoybay=f(x)oyxy=f(x)abx1x2x4如果在如果在闭区区间【a,b】上函数上函数y=f(x)的)的图像是一条像是一条连续不断的曲不断的曲线,那么它必定有最大,那么它必定有最大值和最小和最小值。所有极值连同端点函数值进行比较,所有极值连同端点函数值进行比较,最大的为最大值,最小的为最小值最大的为最大值,最小的为最小值探究新知探究新知x3xoyax1b y=f(x)x2x3x4x5x62024/9/18典型例题典型例题1、求出所有导数为、求出所有导数为0的点;的点;2、计算;、计算;3、比较确定最值。、比较确定最值。在闭区间上求函数最值时,必须确定函数的极大值和极小值吗?在闭区间上求函数最值时,必须确定函数的极大值和极小值吗?2024/9/18动手试试动手试试求下列函数在给定区间上的最大值与最小值:求下列函数在给定区间上的最大值与最小值:2024/9/18典型例题典型例题反思:本题属于逆向探究题型;反思:本题属于逆向探究题型; 其基本方法最终落脚到比较极其基本方法最终落脚到比较极值与端点函数值大小上,从而解决值与端点函数值大小上,从而解决问题,往往伴随有分类讨论。问题,往往伴随有分类讨论。 2024/9/18拓展提高拓展提高我们知道,如果在闭区间我们知道,如果在闭区间【a,b】上函数上函数y=f(x)的图像是一条连续不断的曲线,那)的图像是一条连续不断的曲线,那么它必定有最大值和最小值;那么把么它必定有最大值和最小值;那么把闭区间闭区间【a,b】换成开区间(换成开区间(a,b)是否一定有最是否一定有最值呢?值呢? 2024/9/18函数函数f(x)有一个极值点时,极值点必定是最值点。有一个极值点时,极值点必定是最值点。有两个极值点时,函数有无最值情况不定。有两个极值点时,函数有无最值情况不定。2024/9/18如果函数如果函数f(x)在开区间(在开区间(a,b)上只有一个极)上只有一个极值点,那么这个极值点必定是最值点。值点,那么这个极值点必定是最值点。2024/9/18动手试试动手试试2024/9/18小结:小结:1、基本知识、基本知识2、基本思想、基本思想2024/9/182024/9/18
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号