资源预览内容
第1页 / 共53页
第2页 / 共53页
第3页 / 共53页
第4页 / 共53页
第5页 / 共53页
第6页 / 共53页
第7页 / 共53页
第8页 / 共53页
第9页 / 共53页
第10页 / 共53页
亲,该文档总共53页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
第二节第二节 向量间的线性关系向量间的线性关系一、一、n维向量维向量二、向量的线性关系二、向量的线性关系三、线性相关性三、线性相关性四、特殊向量组的几何意义四、特殊向量组的几何意义1一、一、n维向量维向量数域数域F上的上的n个数个数 定义定义2.2.1组成的有序数组组成的有序数组, 称为数域称为数域F上的一个上的一个n维向量维向量,其中其中 称为向量的第称为向量的第i个分量个分量(i=1,2,n) =a1,a2 , an或或=a1,a2 , anT行向量行向量列向量列向量本节中,本节中,n维向量均指维向量均指n维列向量维列向量 2 数域数域F上的全体上的全体n维列向量构成的集合记作维列向量构成的集合记作 Fn分量都是分量都是0的的n维向量称为维向量称为零向量零向量,记作,记作0 向量向量称为称为n维向量维向量 的的负向量负向量, 记作记作 分量全是实数分量全是实数(复数复数)的的n维向量称为维向量称为实实(复复)向量向量 向量可以看作是特殊的矩阵向量可以看作是特殊的矩阵 3例例1矩阵矩阵有有3个行向量个行向量 有有4个列向量个列向量 4 若干个维数相同的列向量若干个维数相同的列向量(或维数相同的行向量或维数相同的行向量) 所构成的集合叫做所构成的集合叫做向量组向量组 由一个向量组的部分向量构成的向量组称为该由一个向量组的部分向量构成的向量组称为该 向量组的向量组的部分组部分组5例如例如向量组在本课程中的重要性向量组在本课程中的重要性向量组向量组 , , , 称为矩阵称为矩阵A的行向量组的行向量组设有两个设有两个n n 维向量维向量和一个实数和一个实数 k k R,R,则定义则定义 =a1,a2 , anT =b1,b2 , bnT(1) = ai =bi , i=1,2,n(2) + = a1 + b1 , a2 + b2 , an + bn T(3) k =ka1,ka2 , kanT(4) - = (-1) = - a1,- a2 ,- anT(5) - = +(-1) 二、向量的线性运算二、向量的线性运算8 对任何的对任何的n维向量维向量 , , 及任意实数及任意实数k, l, 向量向量的加法及数乘运算统称为向量的的加法及数乘运算统称为向量的线性运算线性运算.满足满足下列的八条性质下列的八条性质(1) + = + (2) ( + ) + = +( + ) (3) + 0 = (4) +(- ) = 0(5) 1 = (6) k(l ) = (kl ) (7) k( + ) = k +k (8) (k + l ) = k + l 9例例2 设设 若若3维向量维向量 满足满足 试求向量试求向量 解解 由由 10三、线性相关性三、线性相关性设设 定义定义2.2.4,则对任意常数则对任意常数 F, 向量向量 称为这称为这s个向量的一个个向量的一个线性组合线性组合 设设 若存在常数若存在常数 使得使得 则称向量则称向量 可以表为可以表为 的线性组合的线性组合, 或称或称 可由向量组可由向量组 线性表出线性表出(或或线性表示线性表示)11n维零向量维零向量0是任一是任一n维向量组维向量组 例例3的线性组合的线性组合 12例例4 设设 n维单位坐标向量组为维单位坐标向量组为 则则可由可由 线性表出线性表出 13例例5向量组向量组A: 1, 2, s中的任一向量都可以由中的任一向量都可以由这个向量组线性表示这个向量组线性表示14p已知的向量能否由一个已知的向量组线性表示?已知的向量能否由一个已知的向量组线性表示?p或者说:一个已知的向量是否可以表示为已知向量的或者说:一个已知的向量是否可以表示为已知向量的线性组合。线性组合。p如果能是否唯一?如果能是否唯一?综合:综合:n元线性方程组元线性方程组AX= 有解的充分必要条件有解的充分必要条件是向量是向量 可由其系数矩阵可由其系数矩阵A的列向量组的列向量组 线性表出线性表出 定理定理2.2.1向量向量 可由向量组可由向量组 线性表出线性表出的充分必要条件是的充分必要条件是 推论推论2.2.1其中其中26设设 = 1,1,1T, = 1,3,0T, = 2,4,1T 例例6试将向量试将向量 用向量用向量 与与 线性表出线性表出27向量组的线性相关与线性无关的概念向量组的线性相关与线性无关的概念对于向量组对于向量组 1 1, , 2 2, s s如果存在如果存在不全为零的数不全为零的数 k k1 1,k,k2 2,k,ks s , ,使得使得则称这个则称这个向量组线性相关向量组线性相关 否则称这个否则称这个向量组线性无关向量组线性无关k1 1 + k2 2 + + ks s = 0定义定义2.2.528注意注意注注证证例例定理定理2.2.2设设令令 则向量组则向量组 线性相关的充分必要条件是线性相关的充分必要条件是s元齐次线性方程组元齐次线性方程组 有非零解有非零解. 推论推论2.2.2 设设则向量组则向量组 线性相关的充分必要条件是线性相关的充分必要条件是35推论推论2.2.3 令令,则则n维向量组维向量组 线性相关的充分必要条件是线性相关的充分必要条件是n元齐次线性方程组元齐次线性方程组 的系数行列式等于零的系数行列式等于零例例7 任意任意s(n)个个n维向量必线性相关维向量必线性相关 任意任意n+1个个n维向量必线性相关维向量必线性相关设设令令则则有非零解有非零解向量组向量组必线性相关必线性相关36定理定理2.2.3 令令,则则n维向量组维向量组 线性无关的充分必要条件是线性无关的充分必要条件是s元齐次线性方程组元齐次线性方程组 仅有零解仅有零解. 即向量组即向量组 线性无关的充分必要条件是线性无关的充分必要条件是 37例例例8是三个向量是三个向量, 由于由于 2 = 2 1 , 因而有因而有系数系数 2,-1,0 不全为零不全为零由上述定义可知由上述定义可知 1, 2, 3线性相关线性相关2 1 + ( - 1) 2 + 0 3 = 0 39例例9 9 含有零向量的任一向量组线性相关含有零向量的任一向量组线性相关设向量组为设向量组为 0, 1, 2, s 对任意的数对任意的数 k 0,有,有k0 + 0 1 + 0 2 +0 n = 040如果如果n维向量组维向量组 例例11线性无关线性无关, 试判断向量组试判断向量组 的线性相关性的线性相关性 解解 设存在数设存在数 ,使得使得 即即线性无关线性无关, 故故 41齐次线性方程组的系数行列式为齐次线性方程组的系数行列式为 当当s为奇数时为奇数时,|A|=2,方程组仅有零解方程组仅有零解.所求向量组线性无关所求向量组线性无关 当当s为偶数时为偶数时,|A|=0,方程组有非零解方程组有非零解.所求向量组线性相关所求向量组线性相关 42若若n维向量组维向量组 例例12线性无关,那么在每一个向量的第线性无关,那么在每一个向量的第n个分量后都个分量后都添加一个分量所得到的添加一个分量所得到的n+1维向量组维向量组亦线性无关亦线性无关(即即“无关组的延长组亦无关无关组的延长组亦无关”)43定理定理2.2.4向量组向量组 1 1, , 2 2, , , s s(s(s 2)2)线性相关的充要条线性相关的充要条件是该向量组中至少有一个向量可由其余件是该向量组中至少有一个向量可由其余s-1s-1个向个向量的线性表出量的线性表出44 线性相关的向量组中未必每个向量均可由其余线性相关的向量组中未必每个向量均可由其余 s-1个向量线性表出个向量线性表出 1 = 1,0,0T 2 = 0,1,0T 3 =0,0,0T 1 不能由不能由 2, 3 线性表示线性表示45推论推论2.2.4 向量组向量组 线性无关的充分必要条件是它的每一个线性无关的充分必要条件是它的每一个向量都不能由其余向量都不能由其余s-1个向量线性表出个向量线性表出 定理定理2.2.5 若向量组若向量组 线性无关线性无关, 而向量组而向量组 线性相关线性相关, 则向量则向量 可由向量组可由向量组 线性表出线性表出,且表示法唯一且表示法唯一 46若向量组若向量组 1, 2, , s中有一部分向量中有一部分向量线性相关线性相关, ,则该向量组线性相关则该向量组线性相关例例13反之未必反之未必47 若向量组若向量组 1, 2, , s线性无关线性无关,则其任则其任一部分一部分 向量组都是线性无关向量组都是线性无关反之未必反之未必 可总结如下结论可总结如下结论 部分相关部分相关整体相关整体相关 整体无关整体无关部分无关部分无关 整体相关整体相关部分相关部分相关 部分无关部分无关 整体整体无关无关48向量组向量组 1, 2, m线性相关还是线性无关线性相关还是线性无关, 通常通常 是指是指 m 2 的情况的情况, 但也适用于但也适用于 m=1的情形的情形. 我们先就我们先就 m=1, m=2,m=3的情形作一些讨论的情形作一些讨论当当m=1时时, 向量组只有一个向量向量组只有一个向量 . 若若 =0, 则则 对任一非零常数对任一非零常数k均有均有 k =0; 若若 0, 则仅则仅 当当 k=0 时才有时才有 k =0. 由定义可知由定义可知 当当 =0 时时, 则则 是线性相关的是线性相关的; 当当 0 时时, 则则 是线性是线性无关的无关的四、特殊向量组的几何意义四、特殊向量组的几何意义49 当当m=2时时, 向量组有两个向量向量组有两个向量 如果这两个向量线性相关,则有不全为零的数如果这两个向量线性相关,则有不全为零的数 k1, k2使得使得 k1 + k2 = 0 如果如果 k1 0,则有,则有 如果如果 k2 0,则有,则有 因而两个向量线性相关则它们的对应分量成比例,因而两个向量线性相关则它们的对应分量成比例, 反过来也一样成立反过来也一样成立 = a1,a2,anT, = b1,b2,bnT50一个向量线性相关的几何意义是它是坐标系原点一个向量线性相关的几何意义是它是坐标系原点二个向量线性相关的几何意义是二向量共线二个向量线性相关的几何意义是二向量共线三个向量线性相关的几何意义是三向量共面三个向量线性相关的几何意义是三向量共面若向量组若向量组, ,线性相关线性相关, 则必有一个向量可则必有一个向量可由其余由其余2个向量线性表出个向量线性表出 当当m=3时时51
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号