资源预览内容
第1页 / 共13页
第2页 / 共13页
第3页 / 共13页
第4页 / 共13页
第5页 / 共13页
第6页 / 共13页
第7页 / 共13页
第8页 / 共13页
第9页 / 共13页
第10页 / 共13页
亲,该文档总共13页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
山东省宁阳第四中学2025学年高一数学第一学期期末调研试题考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1我国古代数学名著九章算术里有一道关于玉石的问题:“今有玉方一寸,重七两;石方一寸,重六两.今有石方三寸,中有玉,并重十一斤(两).问玉、石重各几何?”如图所示的程序框图反映了对此题的一个求解算法,运行该程序框图,则输出的,分别为( )A.,B.,C.,D.,2一种药在病人血液中量低于时病人就有危险,现给某病人的静脉注射了这种药,如果药在血液中以每小时80%的比例衰减,那么应再向病人的血液中补充这种药不能超过的最长时间为()A.1.5小时B.2小时C.2.5小时D.3小时3设,则的值为( )A.0B.1C.2D.34已知函数,则的零点所在区间为A.B.C.D.5形如的函数因其图像类似于汉字中的“囧”字,故我们把其生动地称为“囧函数”.若函数有最小值,则“囧函数”与函数的图像交点个数为()A.1B.2C.4D.66已知,则的大小关系为A.B.C.D.7在下列区间中,函数的零点所在的区间为()A.B.C.D.8二次函数中,则函数的零点个数是A.个B.个C.个D.无法确定9已知函数是上的奇函数,且对任意实数、当时,都有.如果存在实数,使得不等式成立,则实数的取值范围是A.B.C.D.10下列结论中正确的是()A.当时,无最大值B.当时,的最小值为3C.当且时,D.当时,二、填空题:本大题共6小题,每小题5分,共30分。11已知,且,则实数的取值范围为_12已知与之间的一组数据如下,且它们之间存在较好的线性关系,则与的回归直线方程必过定点_13化简=_14若,且,则的最小值为_15如图所示,某农科院有一块直角梯形试验田,其中.某研究小组计则在该试验田中截取一块矩形区域试种新品种的西红柿,点E在边上,则该矩形区域的面积最大值为_.16若,则a的取值范围是_三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17已知函数,(1)若,求函数的值域;(2)已知,且对任意的,不等式恒成立,求的取值范围18设集合. (1)当时,求实数的取值范围; (2)当时,求实数的取值范围.19已知全集,集合(1)求;(2)求20如图,已知等腰梯形中,是的中点,将沿着翻折成,使平面平面.(1)求证:平面;(2)求与平面所成的角;(3)在线段上是否存在点,使得平面,若存在,求出的值;若不存在,说明理由.21设为奇函数,为常数.(1)求的值;(2)证明:在内单调递增;(3)若对于上的每一个的值,不等式恒成立,求实数的取值范围.参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】执行程序框图,;,结束循环,输出的分别为,故选C.【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.2、D【解析】设时间为,依题意有,解指数不等式即可;【详解】解:设时间为,有,即,解得.故选:D3、C【解析】根据分段函数,结合指数,对数运算计算即可得答案.【详解】解:由于,所以.故选:C.【点睛】本题考查对数运算,指数运算,分段函数求函数值,考查运算能力,是基础题.4、B【解析】根据函数的零点判定定理可求【详解】连续函数在上单调递增,的零点所在的区间为,故选B【点睛】本题主要考查了函数零点存在定理的应用,熟记定理是关键,属于基础试题5、C【解析】令,根据函数有最小值,可得,由此可画出“囧函数”与函数在同一坐标系内的图象,由图象分析可得结果.【详解】令,则函数有最小值,当函数是增函数时,在上有最小值,当函数是减函数时,在上无最小值,.此时“囧函数”与函数在同一坐标系内的图象如图所示,由图象可知,它们的图象的交点个数为4.【点睛】本题考查对数函数的性质和函数图象的应用,考查学生画图能力和数形结合的思想运用,属中档题.6、D【解析】,且, ,故选D.7、C【解析】利用零点存在定理即可判断.【详解】函数的定义域为R.因为函数均为增函数,所以为R上的增函数.又,.由零点存在定理可得:的零点所在的区间为.故选:C8、C【解析】计算得出的符号,由此可得出结论.【详解】由已知条件可得,因此,函数的零点个数为.故选:C.9、A【解析】f(x)是R上的奇函数,不妨设ab,ab0,f(a)f(b)0,即f(a)f(b)f(x)在R上单调递增,f(x)为奇函数,f(xc)+f(xc2)0等价于f(xc)f(c2x)不等式等价于xcc2x,即c2+c2x,存在实数使得不等式c2+c2x成立,c2+c6,即c2+c60,解得,故选A点睛:处理抽象不等式的常规方法:利用单调性及奇偶性,把函数值间的不等关系转化为具体的自变量间的关系;同时注意区分恒成立问题与存在性问题.10、D【解析】利用在单调递增,可判断A;利用均值不等式可判断B,D;取可判断C【详解】选项A,由都在单调递增,故在单调递增,因此在上当时取得最大值,选项A错误;选项B,当时,故,当且仅当,即时等号成立,由于,故最小值3取不到,选项B错误;选项C,令,此时,不成立,故C错误;选项D,当时,故,当且仅当,即时,等号成立,故成立,选项D正确故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】 ,该函数的定义域为,又,故为上的奇函数,所以等价于,又为上的单调减函数,也即是,解得,填点睛:解函数不等式时,要注意挖掘函数的奇偶性和单调性12、【解析】因为与的回归直线方程必过定点 则与的回归直线方程必过定点.即答案为.13、【解析】利用对数的运算法则即可得出【详解】解:原式lg0.122+2lg10122故答案为【点睛】本题考查了对数的运算法则,属于基础题14、#【解析】运用均值不等式中“1”的妙用即可求解.【详解】解:因为,且,所以,当且仅当时等号成立,故答案为:.15、【解析】设,求得矩形面积的表达式,结合基本不等式求得最大值.【详解】设,所以矩形的面积,当且仅当时等号成立.故选:16、【解析】先通过的大小确定的单调性,再利用单调性解不等式即可【详解】解:且,得,又在定义域上单调递减,解得故答案为:【点睛】方法点睛:在解决与对数函数相关的解不等式问题时,要优先考虑利用对数函数的单调性来求解在利用单调性时,一定要明确底数a的取值对函数增减性的影响,及真数必须为正的限制条件三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)当时,;当且时,.【解析】(1)由题设,令则,即可求值域.(2)令,将问题转化为在上恒成立,再应用对勾函数的性质,讨论、,分别求出的取值范围【小问1详解】因为,设,则,因为,所以,即当时,当或时,所以的值域为.【小问2详解】因为,所以,又可化成,因为,所以,所以,令,则,依题意,时,恒成立,设,当时,当且仅当,故;当,时,在上单调递增,当时,故,综上所述:当时,;当且时,.【点睛】关键点点睛:应用换元法及参变分离,将问题转化为二次函数求值域,及由不等式恒成立、对勾函数的最值求参数范围.18、(1) (2)【解析】(1)化简集合A,B,由,得,转化为不等式关系,解之即可;(2)由,得到或,解之即可.试题解析:(1), ,即.(2)法一:,或,即法二:当时,或解得或,于是时,即19、(1); (2).【解析】(1)根据集合的并运算,结合已知条件,即可求得结果;(2)先求,再求交集即可.【小问1详解】全集,集合,故.【小问2详解】集合,故或, 故.20、 (1)证明见解析;(2)30;(3)存在,.【解析】(1)首先根据已知条件并结合线面垂直的判定定理证明平面,再证明即可求解;(2)根据(1)中结论找出所求角,再结合已知条件即可求解;(3)首先假设存在,然后根据线面平行的性质以及已知条件,看是否能求出点的具体位置,即可求解.【详解】(1)因为,是的中点,所以,故四边形是菱形,从而,所以沿着翻折成后,又因为,所以平面,由题意,易知,所以四边形是平行四边形,故,所以平面;(2) 因为平面,所以与平面所成的角为,由已知条件,可知,所以是正三角形,所以,所以与平面所成的角为30;(3) 假设线段上是存在点,使得平面,过点作交于,连结,如下图:所以,所以,四点共面,又因平面,所以,所以四边形为平行四边形,故,所以为中点,故在线段上存在点,使得平面,且.21、(1)(2)证明见解析(3)【解析】(1)根据得到,验证得到答案.(2)证明的单调性,再根据复合函数的单调性得到答案.(3)确定单调递增,再计算最小值得到答案.【小问1详解】,即,故,当时,不成立,舍去;当时,验证满足.综上所述:.【小问2详解】,函数定义域为,考虑,设,则,故,函数单调递减.在上单调递减,根据复合函数单调性知在内单调递增.【小问3详解】,即,为增函数.故在单调递增,故.故.
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号