资源预览内容
第1页 / 共15页
第2页 / 共15页
第3页 / 共15页
第4页 / 共15页
第5页 / 共15页
第6页 / 共15页
第7页 / 共15页
第8页 / 共15页
第9页 / 共15页
第10页 / 共15页
亲,该文档总共15页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
天津市滨海新区天津开发区第一中学2025届高一数学第一学期期末复习检测试题注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1表示不超过实数的最大整数,是方程的根,则( )A.B.C.D.2函数(其中mR)的图像不可能是()A.B.C.D.3平行于直线且与圆相切的直线的方程是A.或B.或C.或D.或4若角满足条件,且,则在A.第一象限B.第二象限C.第三象限D.第四象限5甲、乙两人破译一份电报,甲能独立破译的概率为0.3,乙能独立破译的概率为0.4,且两人是否破译成功互不影响,则两人都成功破译的概率为()A.0.5B.0.7C.0.12D.0.886已知函数,若在上单调递增,则实数的取值范围为()A.B.C.D.7已知正实数满足,则的最小值是()AB.C.D.8已知函数,则A.1B.C.2D.09不等式的解集为,则函数的图像大致为( )A.B.C.D.10已知函数,若函数恰有8个不同零点,则实数a的取值范围是()A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分。11的解集为_12若角的终边与角的终边相同,则在内与角的终边相同的角是_13已知为角终边上一点,且,则_14函数的零点为_.15计算的结果是_16若, , .,则a,b,c的大小关系用“”表示为_.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17设矩形的周长为,其中,如图所示,把它沿对角线对折后,交于点.设,.(1)将表示成的函数,并求定义域;(2)求面积的最大值.18已知函数,.(1)求函数的最小正周期以及单调递增区间;(2)求函数在区间上的最小值及相应的的值.19已知,求的值;求的值;若且,求的值20已知二次函数.(1)若在的最大值为5,求的值;(2)当时,若对任意实数,总存在,使得.求的取值范围.21设函数的定义域为,值域为,如果存在函数,使得函数的值域仍是,那么称是函数的一个等值域变换.(1)判断下列函数是不是函数的一个等值域变换?说明你的理由;.(2)设的定义域为,已知是的一个等值域变换,且函数的定义域为,求实数的值.参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】先求出函数的零点的范围,进而判断的范围,即可求出.【详解】由题意可知是的零点,易知函数是(0,)上的单调递增函数,而,即所以,结合性质,可知.故选B.【点睛】本题考查了函数的零点问题,属于基础题2、C【解析】对m分类讨论,利用对勾函数的单调性,逐一进行判断图像即可.【详解】易见, 当时,图像如A选项;当时,时,易见在递增,得在递增;时,令,得为对勾函数,所以在递增,递减,所以根据复合函数单调性得在递减,递增,图像为D;当时,时,易见在递减,故在递减;时为对勾函数, 所以在递减,递增,图像为B.因此,图像不可能是C.故选:C.【点睛】本题考查了利用对勾函数单调性来判断函数的图像,属于中档题.3、A【解析】设所求直线为,由直线与圆相切得,解得所以直线方程为或选A.4、B【解析】因为,所以在第二或第四象限,且,所以在第二象限考点:三角函数的符号5、C【解析】根据相互独立事件的概率乘法公式,即可求解.【详解】由题意,甲、乙分别能独立破译的概率为和,且两人是否破译成功互不影响,则这份电报两人都成功破译的概率为.C.6、C【解析】利用分段函数的单调性列出不等式组,可得实数的取值范围【详解】在上单调递增,则解得故选:C【点睛】本题考查函数单调性的应用,考查分段函数,端点值的取舍是本题的易错7、B【解析】根据题中条件,得到,展开后根据基本不等式,即可得出结果.【详解】因为正实数满足,所以,当且仅当,即时,等号成立.故选:B.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.8、C【解析】根据题意可得,由对数的运算,即可求解,得到答案【详解】由题意,函数,故选C【点睛】本题主要考查了函数值的求法,函数性质等基础知识的应用,其中熟记对数的运算性质是解答的关键,着重考查了考查化归与转化思想、函数与方程思想,属于基础题,9、C【解析】根据不等式的解集求出参数,从而可得,根据该形式可得正确的选项【详解】因为不等式的解集为,故,故,故,令,解得或,故抛物线开口向下,与轴的交点的横坐标为,故选:C10、A【解析】利用十字相乘法进行因式分解,然后利用换元法,作出的图象,利用数形结合判断根的个数即可.【详解】由,得,解得或,作出的图象如图,则若,则或,设,由得,此时或,当时,有两根,当时,有一个根,则必须有,有个根,设,由得,若,由,得或,有一个根,有两个根,此时有个根,不满足题意;若,由,得,有一个根,不满足条件.若,由,得,有一个根,不满足条件;若,由,得或或,当,有一个根,当时,有个根,当时,有一个根,此时共有个根,满足题意.所以实数a的取值范围为.故选:A.【点睛】方法点睛:已知函数零点(方程根)的个数,求参数取值范围的三种常用的方法:(1)直接法,直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法,先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法,先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解一是转化为两个函数的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为的交点个数的图象的交点个数问题第II卷(非选择题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由题得,解不等式得不等式的解集.【详解】由题得,所以.所以不等式的解集为.故答案为【点睛】本题主要考查正切函数的图像和性质,考查三角不等式的解法,意在考查学生对这些知识的掌握水平和分析推理能力.12、【解析】根据角的终边与角的终边相同,得到,再得到,然后由列式,根据,可得整数的值,从而可得.【详解】(),()依题意,得(),解得(),在内与角的终边相同的角为故答案为【点睛】本题考查了终边相同的角的表示,属于基础题.13、#【解析】利用三角函数定义可得:,即可求得:,再利用角的正弦、余弦定义计算得解【详解】由三角函数定义可得:,解得:,则,所以,.故答案为:.14、.【解析】解方程即可.【详解】令,可得,所以函数的零点为.故答案为:.【点睛】本题主要考查求函数的零点,属基础题.15、.【解析】根据对数的运算公式,即可求解.【详解】根据对数的运算公式,可得.故答案为:.16、cab【解析】根据指数函数的单调性以及对数函数的单调性分别判断出的取值范围,从而可得结果【详解】,即;,即;,即,综上可得,故答案为:.【点睛】方法点睛:解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间 );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)【解析】(1)由题意得,则,根据,可得,所以,化简整理,即可求得y与x的关系,根据,即可求得x的范围,即可得答案;(2)由(1)可得,则的面积,根据x的范围,结合基本不等式,即可求得答案.【详解】(1)由题意得:,则,因为在和中,所以,即,所以在中,所以,化简可得,因为,所以,解得,所以,;(2)由(1)可得,所以面积,因为,所以,所以,当且仅当,即时等号成立,此时面积,即面积最大值为【点睛】解题的关键是根据条件,表示出各个边长,根据三角形全等,结合勾股定理,进行求解,易错点为:利用基本不等式求解时,需满足“正”,“定”,“相等”,注意检验取等条件是否成立,考查分析理解,计算化简的能力,属中档题.18、(1);(2);.【解析】(1)利用余弦函数的周期公式计算可得最小正周期,借助余弦函数单调增区间列出不等式求解作答.(2)求出函数的相位范围,再利用余弦函数性质求出最小值作答.【小问1详解】函数中,由得的最小正周期,由,解得,即函数在上单调递增,所以的最小正周期是,单调递增区间是.【小问2详解】当时,则当,即时,所以函数的最小值为,此时.19、 ();();().【解析】根据同角的三角函数的关系即可求出;根据二倍角的正弦公式、二倍角的余弦公式以及两角差的余弦公式即可求出;由,根据同角的三角函数的关系结合两角差的正弦公式即可求出【详解】,.,., .【点睛】三角函数求值有三类,(1)“给角求值”;(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角20、(1)2;(2).【解析】(1)时,;当时,根据单调性可得答案;(2)依题意得,当、时,利用的单调性可得答案;当和时,结合图象和单调性可得答案.【详解】(1)当时,因为,故,;当时,对称轴,在上单调递减,所以,不合题意,舍去,综上可得:.(2)依题意得:,即,.当时,对恒成立,所以,即;当时,对恒成立,所以,即;当时,对恒成立,所以,即;当时,对恒成立,所以,即;综上所述,的取值范围为.【点睛】本题考查了二次函数恒成立的问题,所谓“动轴定区间法”,轴动区间定:比较对称轴与区间端点的位置关系,根据函数的单调性数形结合判断取得最值的点,需要分类讨论.21、(1)不是等值域变换,是等值域变换; (2).【解析】(1)运用对数函数的值域和基本不等式,结合新定义即可判断;运用
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号