资源预览内容
第1页 / 共13页
第2页 / 共13页
第3页 / 共13页
第4页 / 共13页
第5页 / 共13页
第6页 / 共13页
第7页 / 共13页
第8页 / 共13页
第9页 / 共13页
第10页 / 共13页
亲,该文档总共13页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
上海市浦东新区市级名校2025年高一上数学期末预测试题注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1全集U1,2,3,4,5,6,Mx|x4,则M等于( )A.1,3B.5,6C.1,5D.4,52设函数,则使成立的的取值范围是A.B.C.D.3函数的图象大致是A.B.C.D.4方程组的解集是()A.B.C.D.5在下列各区间上,函数是单调递增的是A.B.C.D.6若第三象限角,且,则()A.B.C.D.7已知,则A.B.C.D.8下列说法正确的是A.截距相等的直线都可以用方程表示B.方程不能表示平行轴的直线C.经过点,倾斜角为直线方程为D.经过两点,的直线方程为9等边三角形ABC的边长为1,则()A.B.C.D.10玉雕在我国历史悠久,拥有深厚的文化底蕴,数千年来始终以其独特的内涵与魅力深深吸引着世人.玉雕壁画是采用传统的手工雕刻工艺,加工生产成的玉雕工艺画.某扇形玉雕壁画尺寸(单位:)如图所示,则该壁画的扇面面积约为()A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分。11某公司在甲、乙两地销售同一种农产品,利润(单位:万元)分别为,其中x为销售量(单位:吨),若该公司在这两地共销售10吨农产品,则能获得的最大利润为_万元.12已知幂函数的图象经过点,则_.13_14已知函数是幂函数,且在x(0,)上递减,则实数m_15已知满足任意都有成立,那么的取值范围是_.16若,则_;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17已知集合,函数的定义域为集合.(1)若,求实数的取值范围;(2)求满足的实数的取值范围.18已知函数, .(1)若的定义域为,求实数的取值范围;(2)若,函数为奇函数,且对任意,存在,使得,求实数的取值范围.19已知圆经过两点,且圆心在直线上.(1)求圆的标准方程;(2)若直线过点,且被圆截得的弦长为,求直线的方程.20设函数.(1)求的单调增区间;(2)求在上的最大值与最小值.21已知直线及点.(1)证明直线过某定点,并求该定点的坐标;(2)当点到直线的距离最大时,求直线的方程.参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】M即集合U中满足大于4的元素组成的集合.【详解】由全集U1,2,3,4,5,6,Mx|x4则M = 5,6.故选:B【点睛】本题考查求集合的补集,属于基础题.2、A【解析】,定义域为,函数为偶函数,当时,函数单调递增,根据偶函数性质可知:得成立,的范围为故答案为A.考点:抽象函数的不等式.【思路点晴】本题考查了偶函数的性质和利用偶函数图象的特点解决实际问题,属于基础题型,应牢记根据函数的表达式可知函数为偶函数,根据初等函数的性质判断函数在大于零的单调性为递增,根据偶函数关于原点对称可知,距离原点越远的点,函数值越大,把可转化为,解绝对值不等式即可3、A【解析】因为2、4是函数的零点,所以排除B、C;因为时,所以排除D,故选A4、A【解析】解出方程组,写成集合形式.【详解】由可得:或.所以方程组的解集是.故选:A5、C【解析】根据选项的自变量范围判断函数的单调区间即可.【详解】当时,由正弦函数单调性知,函数单增区间应满足,即,观察选项可知,是函数的单增区间,其余均不是,故选:C6、D【解析】由已知结合求出即可得出.【详解】因为第三象限角,所以,因为,且,解得或,则.故选:D.7、A【解析】故选A8、D【解析】A错误,比如过原点的直线,横纵截距均为0,这时就不能有选项中的式子表示;B当m=0时,表示的就是和y轴平行的直线,故选项不对C不正确,当直线的倾斜角为90度时,正切值无意义,因此不能表示故不正确D根据直线的两点式得到斜率为,再代入一个点得到方程为:故答案为D9、A【解析】直接利用向量的数量积定义进行运算,即可得到答案;详解】,故选:A10、D【解析】利用扇形的面积公式,利用大扇形面积减去小扇形面积即可.【详解】如图,设,由弧长公式可得解得,设扇形,扇形的面积分别为,则该壁画的扇面面积约为.故选:.二、填空题:本大题共6小题,每小题5分,共30分。11、34【解析】设公司在甲地销售农产品吨,则在乙地销售农产品吨,根据利润函数表示出利润之和,利用配方法求出函数的最值即可【详解】设公司在甲地销售农产品()吨,则在乙地销售农产品吨,利润为,又且故当时,能获得的最大利润为34万元故答案为:34.12、#【解析】根据题意得到,求出的值,进而代入数据即可求出结果.【详解】由题意可知,即,所以,即,所以,因此,故答案为:.13、2【解析】考点:对数与指数的运算性质14、2【解析】由幂函数的定义可得m2m11,得出m2或m1,代入验证即可.【详解】是幂函数,根据幂函数的定义和性质,得m2m11解得m2或m1,当m2时,f(x)x3在(0,)上是减函数,符合题意;当m1时,f(x)x01在(0,)上不是减函数,所以m2故答案为:2【点睛】本题考查了幂函数的定义,考查了理解辨析能力和计算能力,属于基础题目.15、【解析】由题意可知,分段函数在上单调递减,因此分段函数的每一段都是单调递减,且左边一段的最小值不小于右边的最大值,即可得到实数的取值范围.【详解】由任意都有成立,可知函数在上单调递减,又因,所以,解得.故答案为:.16、1【解析】根据函数解析式,从里到外计算即可得解.【详解】,所以.故答案为:1三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、 (1)或;(2)或.【解析】(1)由知4满足函数的定义域,由此可得,解不等式可得所求范围(2)由可得,再根据的大小关系求得集合A,然后根据转化为关于实数的不等式组,解不等式组可得所求范围试题解析:(1)因为,解得或.实数的取值范围为(2)由于,当时,即时,函数无意义,由,得,解得,.当,即时,由得,解得;当,即时,此时不满足;当,即时,由得,解得.又,故.综上或实数的取值范围是或.点睛:(1)解答本题时要注意分类讨论的运用,根据实数的不同的取值得到不同的集合;另外还应注意转化思想的运用,在本题中将集合间的包含关系转化为不等式组求解(2)对于题中的对数函数,要注意定义域的限制,特别是在本题中得到这一隐含条件是被容易忽视的问题18、(1);(2).【解析】(1)由函数的定义域为,得到恒成立,即恒成立,分类讨论,即可求解.(2)根据题意,转化为,利用单调性的定义,得到在R上单调递增,求得,得出恒成立,得出恒成立,分类讨论,即可求解.【详解】(1)由函数定义域为,即恒成立,即恒成立,当时,恒成立,因为,所以,即;当时,显然成立;当时,恒成立,因为,所以,综上可得,实数的取值范围.(2)由对任意,存在,使得,可得,设,因为,所以,同理可得,所以,所以,可得,即,所以在R上单调递增,所以,则,即恒成立,因为,所以恒成立,当时,恒成立,因为,当且仅当时等号成立,所以,所以,解得,所以;当时,显然成立;当时,恒成立,没有最大值,不合题意,综上,实数的取值范围.【点睛】利用函数求解方程的根的个数或研究不等式问题的策略:1、利用函数的图象研究方程的根的个数:当方程与基本性质有关时,可以通过函数图象来研究方程的根,方程的根就是函数与轴的交点的横坐标,方程的根据就是函数和图象的交点的横坐标;2、利用函数研究不等式:当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.19、(1)(2)或.【解析】(1)设圆的方程为,根据题意列出方程组,求得的值,即可求解;(2)由圆的弦长公式,求得圆心到直线的距离为,分类直线的斜率不存在和斜率存在两种情况讨论,即可求得直线的方程.【小问1详解】解:圆经过两点,且圆心在直线上,设圆的方程为,可得,解得,所以圆的方程为,即.【小问2详解】解:由圆,可得圆心,半径为,因为直线过点,且被圆截得的弦长为,可得,解得,即圆心到直线的距离为,当直线的斜率不存在时,直线的方程为,此时圆心到直线的距离为,符合题意;当直线的斜率存在时,设直线的斜率为,可得直线的方程为,即由圆心到直线的距离为,解得,所以直线的方程为,即,综上可得,所求直线方程为或.20、(1) (2)最大值为2,最小值为【解析】(1)利用三角恒等变换化简可得,根据正弦型函数的单调性计算即可得出结果.(2)由得,利用正弦函数的图像和性质计算即可得出结果.【小问1详解】令,得,所以的单调增区间为【小问2详解】由得,所以当,即时,取最大值2;当,即时,取最小值.21、 (1)证明见解析,定点坐标为;(2)15x24y20.【解析】(1)直线l的方程可化为 a(2xy1)b(xy1)0,由,即可解得定点;(2)由(1)知直线l恒过定点A,当直线l垂直于直线PA时,点P到直线l的距离最大,利用点斜式求直线方程即可.试题解析:(1)证明:直线l的方程可化为 a(2xy1)b(xy1)0,由, 得,所以直线l恒过定点.(2)由(1)知直线l恒过定点A,当直线l垂直于直线PA时,点P到直线l的距离最大.又直线PA的斜率,所以直线l的斜率kl.故直线l的方程为, 即15x24y20.
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号