资源预览内容
第1页 / 共14页
第2页 / 共14页
第3页 / 共14页
第4页 / 共14页
第5页 / 共14页
第6页 / 共14页
第7页 / 共14页
第8页 / 共14页
第9页 / 共14页
第10页 / 共14页
亲,该文档总共14页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
更多资料添加微信号:DEM2008 淘宝搜索店铺:星哲教育 网址:题型十阅读理解及定义型问题(复习讲义)【考点总结|典例分析】考点01新定义型阅读理解题常见的两种类型1.新定义概念型阅读题:解新定义概念型阅读题,要把握新概念的现实模型,理解新概念的形成过程,以便于正确应用新概念进行分析、解决问题.2.新定义运算型阅读题:把新定义运算转化为一般的实数运算是解这类阅读理解题的关键.【特别提醒】(1)正确理解新定义运算的含义,认真分析题目中的定义,严格按照新定义的运算顺序进行运算求解,切记不可脱离题目要求.(2)在新定义的算式中,若遇有括号的也要先算括号里面的.(3)材料中的新概念、新运算与我们已学过的概念、运算有着密切的联系,注意“新”“旧”知识之间的联系与转化.考点02新公式应用型阅读题新公式应用型阅读题常见的三种类型1.新数学公式型:通过阅读材料,给出新的数学公式,根据新的数学公式解决所给问题.2.新变换法则型:通过阅读材料,给出新的数学变换法则,根据新的变换法则解决所给问题.3.新规定型:通过阅读材料,给出新的规定,根据新规定解决所给问题.【知识归纳】新公式应用型阅读题的解题策略1.通过对所给材料的阅读,从中获得新的数学公式或某种新的变换法则.2.分析新公式的结构特征及适用范围.3.将新公式转化为已学知识,寻找解决问题的突破口,进而利用新公式解决问题.解一元一次不等式的注意事项解一元一次不等式的步骤与解一元一次方程的步骤基本类似,只是注意在不等式的两边同乘或同除一个负数时,不等号的方向要发生改变在数轴上表示不等式的解集时,要注意“分界点”和“方向”,大于向右画,小于向左画,含等于号的画成实心点,不含等于号的要画成空心圆圈考点03新解题方法型阅读题新解题方法型阅读题常见的两种类型1.以例题的形式给出新方法:材料中首先给出一道例题及其解题方法,然后仿照新的解题方法解决与例题类似的问题.这类新方法型阅读题在中考中最为常见,值得关注.2.以新知识的形式给出新方法:先给出体现一个新解题方法的阅读材料,通过阅读体会新方法的实质,然后用新方法解决相关的问题.【特别提醒】(1)认真阅读题目,理解掌握新的解题方法是解决新问题的关键.(2)体会转化思想在解新方法型阅读题中的作用,理解新方法并进行转化,用我们熟悉的知识来解决新问题.【知识归纳】解答数字规律题的步骤(1)计算前几项,一般算出四五项.(2)找出几项的规律,这个规律或是循环,或是成一定的数列规律如等差,等比等.(3)用代数式表示出规律或是得出循环节(即几个数一个循环).(4)验证你得出的结论.考点04归纳概括型阅读题归纳概括型阅读题常见的三种类型1.等式型:通过对给出的几个等式中数的变化,分析、类比、推断、猜测,归纳出等式存在的一般性规律,再用含字母的等式表示一般规律.2.代数式型:通过对给出的几个代数式中数和字母的变化,分析、类比、猜测,归纳出代数式存在的一般性规律,再用含字母的代数式表示一般规律.3.三角函数式型:通过对给出的几个三角函数式中数或字母的变化,分析、类比、猜测,归纳出三角函数式存在的一般性规律,再用数或含字母的式子表示一般规律.1(2023湖北武汉统考中考真题)皮克定理是格点几何学中的一个重要定理,它揭示了以格点为顶点的多边形的面积,其中分别表示这个多边形内部与边界上的格点个数在平面直角坐标系中,横、纵坐标都是整数的点为格点已知,则内部的格点个数是()A266B270C271D2852(2023重庆统考中考真题)在多项式(其中中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”例如:,下列说法:存在“绝对操作”,使其运算结果与原多项式相等;不存在“绝对操作”,使其运算结果与原多项式之和为0;所有的“绝对操作”共有7种不同运算结果其中正确的个数是A0B1C2D33(2023山东统考中考真题)若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:等都是三倍点”,在的范围内,若二次函数的图象上至少存在一个“三倍点”,则c的取值范围是()ABCD4.(2022重庆)对多项式任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:,给出下列说法:至少存在一种“加算操作”,使其结果与原多项式相等;不存在任何“加算操作”,使其结果与原多项式之和为0;所有的“加算操作”共有8种不同的结果以上说法中正确的个数为()A0B1C2D35(2022湖南常德)我们发现:,一般地,对于正整数,如果满足时,称为一组完美方根数对如上面是一组完美方根数对则下面4个结论:是完美方根数对;是完美方根数对;若是完美方根数对,则;若是完美方根数对,则点在抛物线上其中正确的结论有()A1个B2个C3个D4个7对于实数a、b,定义一种新运算“”为:,这里等式右边是实数运算例如:则方程的解是( )Ax4 Bx5 Cx6 Dx78.将关于x的一元二次方程变形为,就可以将表示为关于x的一次多项式,从而达到“降次”的目的,又如,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:,且x0,则的值为( )A. B. C. D.9(2023湖南常德统考中考真题)沈括的梦溪笔谈是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图是以O为圆心,为半径的圆弧,C是弦的中点,D在上,“会圆术”给出长l的近似值s计算公式:,当,时,_(结果保留一位小数)10(2023重庆统考中考真题)对于一个四位自然数M,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M为“天真数”如:四位数7311,7311是“天真数”;四位数8421,8421不是“天真数”,则最小的“天真数”为_;一个“天真数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记,若能被10整除,则满足条件的M的最大值为_11(2022四川眉山)将一组数,2,按下列方式进行排列:,2,;,4;若2的位置记为,的位置记为,则的位置记为_12(2023浙江绍兴统考中考真题)在平面直角坐标系中,一个图形上的点都在一边平行于轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形例如:如图,函数的图象(抛物线中的实线部分),它的关联矩形为矩形若二次函数图象的关联矩形恰好也是矩形,则_13.对于任意两个不相等的数a,b,定义一种新运算“”如下:ab,如:32,那么124_14.定义一种新运算:对于任意的非零实数a,b,若,则x的值为_15.定义,为函数2+的特征数,下面给出特征数为2m,1m,1m的函数的一些结论:当m3时,函数图象的顶点坐标是();当m0时,函数图象截轴所得的线段长度大于;当m0时,函数在时,随的增大而减小;当m0时,函数图象经过同一个点其中正确的结论有_16.若记y=f(x)=,其中f(1)表示当x=1时y的值,即f(1)=;f()表示当x=时y的值,即f()=;则f(1)+f(2)+f()+f(3)+f()+f(2011)+f()=17(2023内蒙古通辽统考中考真题)阅读材料:材料1:关于x的一元二次方程的两个实数根和系数a,b,c有如下关系:,材料2:已知一元二次方程的两个实数根分别为m,n,求的值解:m,n是一元二次方程的两个实数根,则根据上述材料,结合你所学的知识,完成下列问题:(1)应用:一元二次方程的两个实数根为,则_,_;(2)类比:已知一元二次方程的两个实数根为m,n,求的值;(3)提升:已知实数s,t满足且,求的值18(2022重庆)若一个四位数的个位数字与十位数字的平方和恰好是去掉个位与十位数字后得到的两位数,则这个四位数为“勾股和数”例如:,2543是“勾股和数”;又如:,4325不是“勾股和数”(1)判断2022,5055是否是“勾股和数”,并说明理由;(2)一个“勾股和数”的千位数字为,百位数字为,十位数字为,个位数字为,记,当,均是整数时,求出所有满足条件的19(2023浙江宁波统考中考真题)定义:有两个相邻的内角是直角,并且有两条邻边相等的四边形称为邻等四边形,相等两邻边的夹角称为邻等角(1)如图1,在四边形中,对角线平分求证:四边形为邻等四边形(2)如图2,在65的方格纸中,A,B,C三点均在格点上,若四边形是邻等四边形,请画出所有符合条件的格点D(3)如图3,四边形是邻等四边形,为邻等角,连接,过B作交的延长线于点E若,求四边形的周长20.请你阅读引例及其分析解答,希望能给你以启示,然后完成对探究一和探究二的解答引例:设a,b,c为非负实数,求证:(abc),分析:考虑不等式中各式的几何意义,我们可以试构造一个边长为abc的正方形来研究解:如图,设正方形的边长为abc,则AB,BC,CD,显然ABBCCDAD,(abc)探究一:已知两个正数x,y,满足xy12,求的最小值(图仅供参考);探究二:若a,b为正数,求以,为边的三角形的面积21(2022重庆)对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N是m的“和倍数”例如:,247是13的“和倍数”又如:,214不是“和倍数”(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且在a,b,c中任选两个组成两位数,其中最大的两位数记为,最小的两位数记为,若为整数,求出满足条件的所有数A22(2023河北统考中考真题)在平面直角坐标系中,设计了点的两种移动方式:从点移动到点称为一次甲方式:从点移动到点称为一次乙方式点P从原点O出发连续移动2次;若都按甲方式,最终移动到点;若都按乙方式,最终移动到点;若按1次甲方式和1次乙方式,最终移动到点(1)设直线经过上例中的点,求的解析式;并直接写出将向上平移9个单位长度得到的直线的解析式;(2)点P从原点O出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点其中,按甲方式移动了m次用含m的式子分别表示;请说明:无论m怎样变化,点Q都在一条确定的直线上设这条直线为,在图中直接画出的图象;(3)在(1)和(2)中的直线上分别有一个动点,横坐标依次为,若A,B,C三点始终在一条直线上,直接写出此时a,b,c之间的关系式23.阅读材料:各类方程的解法
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号