资源预览内容
第1页 / 共23页
第2页 / 共23页
第3页 / 共23页
第4页 / 共23页
第5页 / 共23页
第6页 / 共23页
第7页 / 共23页
第8页 / 共23页
第9页 / 共23页
第10页 / 共23页
亲,该文档总共23页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
更多资料添加微信号:DEM2008 淘宝搜索店铺:星哲教育 网址:类型八 二次函数与平行四边形有关的问题(专题训练)1(2023四川自贡统考中考真题)如图,抛物线与x轴交于,两点,与轴交于点(1)求抛物线解析式及,两点坐标;(2)以,为顶点的四边形是平行四边形,求点坐标;(3)该抛物线对称轴上是否存在点,使得,若存在,求出点的坐标;若不存在,请说明理由2(2023山东枣庄统考中考真题)如图,抛物线经过两点,并交x轴于另一点B,点M是抛物线的顶点,直线AM与轴交于点D(1)求该抛物线的表达式;(2)若点H是x轴上一动点,分别连接MH,DH,求的最小值;(3)若点P是抛物线上一动点,问在对称轴上是否存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由3(2023山东聊城统考中考真题)如图,抛物线与x轴交于点,与y轴交于点C,连接AC,BC.点P是x轴上任意一点(1)求抛物线的表达式;(2)点Q在抛物线上,若以点A,C,P,Q为顶点,AC为一边的四边形为平行四边形时,求点Q的坐标;(3)如图,当点从点A出发沿x轴向点B运动时(点P与点A,B不重合),自点P分别作,交AC于点E,作,垂足为点D当m为何值时,面积最大,并求出最大值4(2023山东统考中考真题)如图,直线交轴于点,交轴于点,对称轴为的抛物线经过两点,交轴负半轴于点为抛物线上一动点,点的横坐标为,过点作轴的平行线交抛物线于另一点,作轴的垂线,垂足为,直线交轴于点(1)求抛物线的解析式;(2)若,当为何值时,四边形是平行四边形?(3)若,设直线交直线于点,是否存在这样的值,使?若存在,求出此时的值;若不存在,请说明理由5(2023四川南充统考中考真题)如图1,抛物线()与轴交于,两点,与轴交于点(1)求抛物线的解析式;(2)点P在抛物线上,点Q在x轴上,以B,C,P,Q为顶点的四边形为平行四边形,求点P的坐标;(3)如图2,抛物线顶点为D,对称轴与x轴交于点E,过点的直线(直线除外)与抛物线交于G,H两点,直线,分别交x轴于点M,N试探究是否为定值,若是,求出该定值;若不是,说明理由6.(2021四川南充市中考真题)如图,已知抛物线与x轴交于点A(1,0)和B,与y轴交于点C,对称轴为(1)求抛物线的解析式;(2)如图1,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,连接OQ当线段PQ长度最大时,判断四边形OCPQ的形状并说明理由(3)如图2,在(2)的条件下,D是OC的中点,过点Q的直线与抛物线交于点E,且在y轴上是否存在点F,使得为等腰三角形?若存在,求点F的坐标;若不存在,请说明理由7.(2021重庆中考真题)如图,在平面直角坐标系中,抛物线与x轴交于点,与y轴交于点C (1)求该抛物线的解析式;(2)直线l为该抛物线的对称轴,点D与点C关于直线l对称,点P为直线AD下方抛物线上一动点,连接PA,PD,求面积的最大值;(3)在(2)的条件下,将抛物线沿射线AD平移个单位,得到新的抛物线,点E为点P的对应点,点F为的对称轴上任意一点,在上确定一点G,使得以点D,E,F,G为顶点的四边形是平行四边形,写出所有符合条件的点G的坐标,并任选其中一个点的坐标,写出求解过程8.(2022四川眉山)在平面直角坐标系中,抛物线与轴交于点,(点在点的左侧),与轴交于点,且点的坐标为(1)求点的坐标;(2)如图1,若点是第二象限内抛物线上一动点,求点到直线距离的最大值;(3)如图2,若点是抛物线上一点,点是抛物线对称轴上一点,是否存在点使以,为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由9.(2021重庆中考真题)如图,在平面直角坐标系中,抛物线经过A(0,1),B(4,1)直线AB交x轴于点C,P是直线AB下方抛物线上的一个动点过点P作PDAB,垂足为D,PEx轴,交AB于点E(1)求抛物线的函数表达式;(2)当PDE的周长取得最大值时,求点P的坐标和PDE周长的最大值;(3)把抛物线平移,使得新抛物线的顶点为(2)中求得的点PM是新抛物线上一点,N是新抛物线对称轴上一点,直接写出所有使得以点A,B,M,N为顶点的四边形是平行四边形的点M的坐标,并把求其中一个点M的坐标的过程写出来10.(2021广东中考真题)已知二次函数的图象过点,且对任意实数x,都有(1)求该二次函数的解析式;(2)若(1)中二次函数图象与x轴的正半轴交点为A,与y轴交点为C;点M是(1)中二次函数图象上的动点问在x轴上是否存在点N,使得以A、C、M、N为顶点的四边形是平行四边形若存在,求出所有满足条件的点N的坐标;若不存在,请说明理由11.(2021四川中考真题)如图,抛物线与x轴交于A、B两点,与y轴交于C点,(1)求抛物线的解析式;(2)在第二象限内的抛物线上确定一点P,使四边形PBAC的面积最大求出点P的坐标(3)在(2)的结论下,点M为x轴上一动点,抛物线上是否存在一点Q使点P、B、M、Q为顶点的四边形是平行四边形,若存在请直接写出Q点的坐标;若不存在,请说明理由12.(2021湖南中考真题)将抛物线向左平移1个单位,再向上平移4个单位后,得到抛物线抛物线与轴交于点,与轴交于点已知,点是抛物线上的一个动点(1)求抛物线的表达式;(2)如图1,点在线段上方的抛物线上运动(不与,重合),过点作,垂足为,交于点作,垂足为,求的面积的最大值;(3)如图2,点是抛物线的对称轴上的一个动点,在抛物线上,是否存在点,使得以点,为顶点的四边形是平行四边形?若存在,求出所有符合条件的点的坐标;若不存在,说明理由13.(2021海南中考真题)已知抛物线与x轴交于两点,与y轴交于C点,且点A的坐标为、点C的坐标为(1)求该抛物线的函数表达式;(2)如图1,若该抛物线的顶点为P,求的面积;(3)如图2,有两动点在的边上运动,速度均为每秒1个单位长度,它们分别从点C和点B同时出发,点D沿折线按方向向终点B运动,点E沿线段按方向向终点C运动,当其中一个点到达终点时,另一个点也随之停止运动设运动时间为t秒,请解答下列问题:当t为何值时,的面积等于;在点运动过程中,该抛物线上存在点F,使得依次连接得到的四边形是平行四边形,请直接写出所有符合条件的点F的坐标14.(2020齐齐哈尔)综合与探究在平面直角坐标系中,抛物线y=12x2+bx+c经过点A(4,0),点M为抛物线的顶点,点B在y轴上,且OAOB,直线AB与抛物线在第一象限交于点C(2,6),如图(1) 求抛物线的解析式;(2)直线AB的函数解析式为,点M的坐标为),cosABO;连接OC,若过点O的直线交线段AC于点P,将AOC的面积分成1:2的两部分,则点P的坐标为;(3)在y轴上找一点Q,使得AMQ的周长最小具体作法如图,作点A关于y轴的对称点A,连接MA交y轴于点Q,连接AM、AQ,此时AMQ的周长最小请求出点Q的坐标;(4)在坐标平面内是否存在点N,使以点A、O、C、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由15.如图,在平面直角坐标系中,抛物线yax2+bx+2(a0)与y轴交于点C,与x轴交于A,B两点(点A在点B的左侧),且A点坐标为(-2,0),直线BC的解析式为y=-23x+2(1)求抛物线的解析式;(2)过点A作ADBC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE,EB,BD,DC求四边形BECD面积的最大值及相应点E的坐标;(3)将抛物线yax2+bx+2(a0)向左平移2个单位,已知点M为抛物线yax2+bx+2(a0)的对称轴上一动点,点N为平移后的抛物线上一动点在(2)中,当四边形BECD的面积最大时,是否存在以A,E,M,N为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由16.如图,已知在平面直角坐标系xOy中,抛物线yx2+bx+c(c0)的顶点为D,与y轴的交点为C过点C的直线CA与抛物线交于另一点A(点A在对称轴左侧),点B在AC的延长线上,连结OA,OB,DA和DB(1)如图1,当ACx轴时,已知点A的坐标是(2,1),求抛物线的解析式;若四边形AOBD是平行四边形,求证:b24c(2)如图2,若b2,BCAC=35,是否存在这样的点A,使四边形AOBD是平行四边形?若存在,求出点A的坐标;若不存在,请说明理由17.已知抛物线yax2+bx+c(a0)与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,3),顶点D的坐标为(1,4)(1)求抛物线的解析式(2)在y轴上找一点E,使得EAC为等腰三角形,请直接写出点E的坐标(3)点P是x轴上的动点,点Q是抛物线上的动点,是否存在点P、Q,使得以点P、Q、B、D为顶点,BD为一边的四边形是平行四边形?若存在,请求出点P、Q坐标;若不存在,请说明理由18.如图,抛物线yax2+bx+c(a0)的图象经过A(1,0),B(3,0),C(0,6)三点(1)求抛物线的解析式(2)抛物线的顶点M与对称轴l上的点N关于x轴对称,直线AN交抛物线于点D,直线BE交AD于点E,若直线BE将ABD的面积分为1:2两部分,求点E的坐标(3)P为抛物线上的一动点,Q为对称轴上动点,抛物线上是否存在一点P,使A、D、P、Q为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由19.如图,在平面直角坐标系xOy中,直线ykx+3分别交x轴、y轴于A,B两点,经过A,B两点的抛物线yx2+bx+c与x轴的正半轴相交于点C(1,0)(1)求抛物线的解析式;(2)若P为线段AB上一点,APOACB,求AP的长;(3)在(2)的条件下,设M是y轴上一点,试问:抛物线上是否存在点N,使得以A,P,M,N为顶点的四边形为平行四边形?若存在,求出点N的坐标;若不存在,请说明理由20.如图
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号